Corrosion of Titanium


Book Description







Titanium


Book Description

Designed to support the need of engineering, management, and other professionals for information on titanium by providing an overview of the major topics, this book provides a concise summary of the most useful information required to understand titanium and its alloys. The author provides a review of the significant features of the metallurgy and application of titanium and its alloys. All technical aspects of the use of titanium are covered, with sufficient metals property data for most users. Because of its unique density, corrosion resistance, and relative strength advantages over competing materials such as aluminum, steels, and superalloys, titanium has found a niche in many industries. Much of this use has occurred through military research, and subsequent applications in aircraft, of gas turbine engines, although more recent use features replacement joints, golf clubs, and bicycles.Contents include: A primer on titanium and its alloys, Introduction to selection of titanium alloys, Understanding titanium's metallurgy and mill products, Forging and forming, Castings, Powder metallurgy, Heat treating, Joining technology and practice, Machining, Cleaning and finishing, Structure/processing/property relationships, Corrosion resistance, Advanced alloys and future directions, Appendices: Summary table of titanium alloys, Titanium alloy datasheets, Cross-reference to titanium alloys, Listing of selected specification and standardization organizations, Selected manufacturers, suppliers, services, Corrosion data, Machining data.




Titanium and its Alloys


Book Description

Selected, peer reviewed papers from the 12th National Conference on Titanium and its Alloys "Ti-2015", October 11-14, 2015, Zawiercie Nowe, Poland







Titanium and Titanium Alloys


Book Description

This handbook is an excellent reference for materials scientists and engineers needing to gain more knowledge about these engineering materials. Following introductory chapters on the fundamental materials properties of titanium, readers will find comprehensive descriptions of the development, processing and properties of modern titanium alloys. There then follows detailed discussion of the applications of titanium and its alloys in aerospace, medicine, energy and automotive technology.




Titanium Alloys in Surgical Implants


Book Description




Titanium in Medical and Dental Applications


Book Description

Titanium in Medical and Dental Applications is an essential reference book for those involved in biomedical materials and advanced metals. Written by well-known experts in the field, it covers a broad array of titanium uses, including implants, instruments, devices, the manufacturing processes used to create them, their properties, corrosion resistance and various fabrication approaches. Biomedical titanium materials are a critically important part of biomaterials, especially in cases where non-metallic biomedical materials are not suited to applications, such as the case of load-bearing implants. The book also covers the use of titanium for implants in the medical and dental fields and reviews the use of titanium for medical instruments and devices. - Provides an understanding of the essential and broad applications of Titanium in both the medical and dental industries - Discusses the pathways to manufacturing titanium into critical biomedical and dental devices - Includes insights into further applications within the industry




Titanium Alloys


Book Description

Given their growing importance in the aerospace, automotive, sports and medical sectors, modelling the microstructure and properties of titanium and its alloys is a vital part of research into the development of new applications. This is the first time a book has been dedicated to modelling techniques for titanium.Part one discusses experimental techniques such as microscopy, synchrotron radiation X-ray diffraction and differential scanning calorimetry. Part two reviews physical modelling methods including thermodynamic modelling, the Johnson-Mehl-Avrami method, finite element modelling, the phase-field method, the cellular automata method, crystallographic and fracture behaviour of titanium aluminide and atomistic simulations of interfaces and dislocations relevant to TiAl. Part three covers neural network models and Part four examines surface engineering products. These include surface nitriding: phase composition, microstructure, mechanical properties, morphology and corrosion; nitriding: modelling of hardness profiles and kinetics; and aluminising: fabrication of Ti coatings by mechanical alloying.With its distinguished authors, Titanium alloys: Modelling of microstructure, properties and applications is a standard reference for industry and researchers concerned with titanium modelling, as well as users of titanium, titanium alloys and titanium aluminide in the aerospace, automotive, sports and medical implant sectors. - Comprehensively assesses modelling techniques for titanium, including experimental techniques such as microscopy and differential scanning calorimetry - Reviews physical modelling methods including thermodynamic modelling and finite element modelling - Examines surface engineering products with specific chapters focused on surface nitriding and aluminising




Titanium Alloys


Book Description

Recognized for their superior strength, corrosion/oxidation resistance, and biocompatibility, titanium alloys are particularly intriguing to engineers, scientists, and metallurgists in aerospace, biomedical, and other industrial applications. Titanium Alloys: An Atlas of Structures and Fracture Features uses award-winning micrographs and fra