The Definitive Guide to ARM® Cortex®-M3 and Cortex®-M4 Processors


Book Description

This new edition has been fully revised and updated to include extensive information on the ARM Cortex-M4 processor, providing a complete up-to-date guide to both Cortex-M3 and Cortex-M4 processors, and which enables migration from various processor architectures to the exciting world of the Cortex-M3 and M4. This book presents the background of the ARM architecture and outlines the features of the processors such as the instruction set, interrupt-handling and also demonstrates how to program and utilize the advanced features available such as the Memory Protection Unit (MPU). Chapters on getting started with IAR, Keil, gcc and CooCox CoIDE tools help beginners develop program codes. Coverage also includes the important areas of software development such as using the low power features, handling information input/output, mixed language projects with assembly and C, and other advanced topics. Two new chapters on DSP features and CMSIS-DSP software libraries, covering DSP fundamentals and how to write DSP software for the Cortex-M4 processor, including examples of using the CMSIS-DSP library, as well as useful information about the DSP capability of the Cortex-M4 processor A new chapter on the Cortex-M4 floating point unit and how to use it A new chapter on using embedded OS (based on CMSIS-RTOS), as well as details of processor features to support OS operations Various debugging techniques as well as a troubleshooting guide in the appendix Topics on software porting from other architectures A full range of easy-to-understand examples, diagrams and quick reference appendices




The Cortex and the Critical Point


Book Description

How the cerebral cortex operates near a critical phase transition point for optimum performance. Individual neurons have limited computational powers, but when they work together, it is almost like magic. Firing synchronously and then breaking off to improvise by themselves, they can be paradoxically both independent and interdependent. This happens near the critical point: when neurons are poised between a phase where activity is damped and a phase where it is amplified, where information processing is optimized, and complex emergent activity patterns arise. The claim that neurons in the cortex work best when they operate near the critical point is known as the criticality hypothesis. In this book John Beggs—one of the pioneers of this hypothesis—offers an introduction to the critical point and its relevance to the brain. Drawing on recent experimental evidence, Beggs first explains the main ideas underlying the criticality hypotheses and emergent phenomena. He then discusses the critical point and its two main consequences—first, scale-free properties that confer optimum information processing; and second, universality, or the idea that complex emergent phenomena, like that seen near the critical point, can be explained by relatively simple models that are applicable across species and scale. Finally, Beggs considers future directions for the field, including research on homeostatic regulation, quasicriticality, and the expansion of the cortex and intelligence. An appendix provides technical material; many chapters include exercises that use freely available code and data sets.




The Performance Cortex


Book Description

“A must-read for the cerebral sports fan . . . like Moneyball except nerdier. Much nerdier.” —Sports Illustrated Why couldn’t Michael Jordan, master athlete that he was, crush a baseball? Why can’t modern robotics come close to replicating the dexterity of a five-year-old? Why do great quarterbacks always seem to know where their receivers are? On a quest to discover what actually drives human movement and its spectacular potential, journalist, sports writer, and fan Zach Schonbrun interviewed experts on motor control around the world. The trail begins with the groundbreaking work of two neuroscientists in Major League Baseball who are upending the traditional ways scouts evaluate the speed with which great players read a pitch. Across all sports, new theories and revolutionary technology are revealing how the brain’s motor control system works in extraordinarily talented athletes like Stephen Curry, Tom Brady, Serena Williams, and Lionel Messi; as well as musical virtuosos, dancers, rock climbers, race-car drivers, and more. Whether it is timing a 95 mph fastball or reaching for a coffee mug, movement requires a complex suite of computations that many take for granted—until they read The Performance Cortex. Zach Schonbrun ushers in a new way of thinking about the athletic gifts we marvel over and seek to develop in our own lives. It’s not about the million-dollar arm anymore. It’s about the million-dollar brain.




Cerebral Cortex


Book Description

This book provides insights into the principles of operation of the cerebral cortex. These principles are key to understanding how we, as humans, function. The book includes Appendices on the operation of many of the neuronal networks described in the book, together with simulation software written in Matlab.




The Definitive Guide to the ARM Cortex-M3


Book Description

This user's guide does far more than simply outline the ARM Cortex-M3 CPU features; it explains step-by-step how to program and implement the processor in real-world designs. It teaches readers how to utilize the complete and thumb instruction sets in order to obtain the best functionality, efficiency, and reuseability. The author, an ARM engineer who helped develop the core, provides many examples and diagrams that aid understanding. Quick reference appendices make locating specific details a snap! Whole chapters are dedicated to: Debugging using the new CoreSight technology Migrating effectively from the ARM7 The Memory Protection Unit Interfaces, Exceptions,Interrupts ...and much more! The only available guide to programming and using the groundbreaking ARM Cortex-M3 processor Easy-to-understand examples, diagrams, quick reference appendices, full instruction and Thumb-2 instruction sets are included T teaches end users how to start from the ground up with the M3, and how to migrate from the ARM7




The Auditory Cortex


Book Description

There has been substantial progress in understanding the contributions of the auditory forebrain to hearing, sound localization, communication, emotive behavior, and cognition. The Auditory Cortex covers the latest knowledge about the auditory forebrain, including the auditory cortex as well as the medial geniculate body in the thalamus. This book will cover all important aspects of the auditory forebrain organization and function, integrating the auditory thalamus and cortex into a smooth, coherent whole. Volume One covers basic auditory neuroscience. It complements The Auditory Cortex, Volume 2: Integrative Neuroscience, which takes a more applied/clinical perspective.




The Prefrontal Cortex


Book Description




The Definitive Guide to the ARM Cortex-M3


Book Description

This user's guide does far more than simply outline the ARM Cortex-M3 CPU features; it explains step-by-step how to program and implement the processor in real-world designs. It teaches readers how to utilize the complete and thumb instruction sets in order to obtain the best functionality, efficiency, and reuseability. The author, an ARM engineer who helped develop the core, provides many examples and diagrams that aid understanding. Quick reference appendices make locating specific details a snap! Whole chapters are dedicated to: Debugging using the new CoreSight technology Migrating effectively from the ARM7 The Memory Protection Unit Interfaces, Exceptions,Interrupts ...and much more! *The only available guide to programming and using the groundbreaking ARM Cortex-M3 processor *Easy-to-understand examples, diagrams, quick reference appendices, full instruction and Thumb-2 instruction sets are all included *The author, an ARM engineer on the M3 development team, teaches end users how to start from the ground up with the M3, and how to migrate from the ARM7




Comparative Structure and Evolution of Cerebral Cortex


Book Description

The cerebral cortex, especially that part customarily designated "neocortex," is one of the hallmarks of mammalian evolution and reaches its greatest size, relatively speaking, and its widest structural diversity in the human brain. The evolution of this structure, as remarkable for the huge numbers of neurons that it contains as for the range of behaviors that it controls, has been of abiding interest to many generations of neuroscientists. Yet few theories of cortical evo lution have been proposed and none has stood the test of time. In particular, no theory has been successful in bridging the evolutionary gap that appears to exist between the pallium of nonmammalian vertebrates and the neocortex of mam mals. Undoubtedly this stems in large part from the rapid divergence of non mammalian and mammalian forms and the lack of contemporary species whose telencephalic wall can be seen as having transitional characteristics. The mono treme cortex, for example, is unquestionably mammalian in organization and that of no living reptile comes close to resembling it. Yet anatomists such as Ramon y Cajal, on examining the finer details of cortical structure, were struck by the similarities in neuronal form, particularly of the pyramidal cells, and their predisposition to laminar alignment shared by representatives of all vertebrate classes.




Cerebellar Cortex


Book Description

The origins of this book go back to the first electron microscopic studies of the central nervous system. The cerebellar cortex was from the first an object of close study in the electron microscope, repeating in modern cytology and neuroanatomy the role it had in the hands of RAMON y CAJAL at the end of the nineteenth century. The senior author vividly remembers a day early in 1953 when GEORGE PALADE, with whom he was then working, showed him an electron micrograph of a cerebellar glomerulus, saying "That is what the synapse should look like. " It is true that the tissue was swollen and the mitochondria were exploded, but all of the essentials of synaptic structure were visible. At that time small fragments of tissue, fixed by immersion in osmium tetroxide and embedded in methacrylate, were laboriously sectioned with glass knives without any predetermined orientation and then examined in the electron microscope. After much searching, favorably preserved areas' were studied at the cytological level in order to recognize the parts of neurons and characterize them. Such procedures, dependent upon random sections and uncontrollable selection by a highly erratic technique of preservation, precluded any systematic investigation of the organization of a particular nucleus or region of the central nervous system. It was difficult enough to distinguish neurons from the neuroglia.