Cosmic Magnetic Fields


Book Description

Magnetic fields pervade the universe and play an important role in many astrophysical processes. However, they require specialised observational tools, and are challenging to model and understand. This volume provides a unified view of magnetic fields across astrophysical and cosmological contexts, drawing together disparate topics that are rarely covered together. Written by the lecturers of the XXV Canary Islands Winter School, it offers a self-contained introduction to cosmic magnetic fields on a range of scales. The connections between the behaviours of magnetic fields in these varying contexts are particularly emphasised, from the relatively small and close ranges of the Sun, planets and stars, to galaxies and clusters of galaxies, as well as on cosmological scales. Aimed at young researchers and graduate students, this up-to-date review uniquely brings together a subject often tackled by disconnected communities, conveying the latest advances as well as highlighting the limits of our current understanding.




Astrophysical Magnetic Fields


Book Description

This self-contained introduction to astrophysical magnetic fields provides a comprehensive review of the current state of the field and a critical discussion of the latest research. Its emphasis on results that are likely to form the basis for future progress benefits a broad audience of advanced students and active researchers.




Cosmical Magnetism


Book Description

Prof. Leon Mestel has been an inspiration to many to study the role of magnetism in the Cosmos. To mark the occasion of his retin'ment from the University of Sussex after 43 years in astrophysics, several of his friends and former students decided to hold an advanced research workshop in his honour. NATO agreed to finance this venture which was held at the Institute of Astronomy at Cambridge. The scientific organizing committee was J. Landstreet, D. Lynden-Bell, F. Pacini, M.A. Rud0rman and N.O. Weiss and most leading experts on Cosmical magnetism agreed to come. We are particularly grateful to Lyman Spitzer who, ably helped by his wife Doreen, !!;ave the after dinner addre~s on how the goddess Astrophysica had foreseen Leon's achievements in classical Greek times. Not without regret we decided to maintain the homog0neity of the material and therefore could not cover Leon Mestel's major achievements in non-magnetic astronomy. His work on the cooling of white dwarfs, his understanding that degenerate hydrogen was a nuclear explosive since its pressure was almost independent of temperature and hence, his picture of supernovae, which is now more commonly applied to novae, his seminal understanding of the 'law' of galactic rotation and his work on the non-linear development of t hp anisotropies generated in gravitational collapse.




Cosmic Magnetism,


Book Description

The study of extraterrestrial magnetic fields is a relatively new one, confirmation of the existance of the first such field (that of our Sun) having come a s late as 1908. In the past 30 years a great ammount of knowledge has been accumulated on Cosmic Magnetism, which has turned out to be a truly fascinating topic for study. Percy Seymour's book is the first to deal with the topic in a non-mathematical way, and he offers a fine introduction to his subject. The first three chapters consolidate our knowledge on magnetism in general and the magnetic field of the Earth, as well as discussing the reasons for studying astronomy and cosmic magnetism in particular. The remainder of the book is devoted to the main areas of cosmic magnetism - solar, plantetary and interplanetary fields, fields in stars and pulsars, fields of the milky way and fields in other galaxies. Cosmic Magnetism in an ideal book for sixth-formers and undergraduates studying physics or astronomy and will also appeal to amateur astronomers. as previous work on this topic has been 'hidden' in specialised academic journals.




Magnetism of the Earth


Book Description




Stellar Magnetism


Book Description

Ongoing studies in mathematical depth, and inferences from `helioseismological' observations of the internal solar rotation have shown up the limitations in our knowledge of the solar interior and of our understanding of the solar dynamo, manifested in particular by the sunspot cycle, the Maunder minimum, and solar flares. This second edition retains the identical overall structure as the first edition, but is designed so as to be self-contained with the early chapters presenting the basic physics and mathematics underlying cosmical magnetohydrodynamics, followed by studies of the specific applications appropriate for a book devoted to a central area in astrophysics.




Magnetism of the Earth


Book Description




Galactic and Intergalactic Magnetic Fields


Book Description

This course-tested textbook conveys the fundamentals of magnetic fields and relativistic plasma in diffuse cosmic media, with a primary focus on phenomena that have been observed at different wavelengths. Theoretical concepts are addressed wherever necessary, with derivations presented in sufficient detail to be generally accessible. In the first few chapters the authors present an introduction to various astrophysical phenomena related to cosmic magnetism, with scales ranging from molecular clouds in star-forming regions and supernova remnants in the Milky Way, to clusters of galaxies. Later chapters address the role of magnetic fields in the evolution of the interstellar medium, galaxies and galaxy clusters. The book is intended for advanced undergraduate and postgraduate students in astronomy and physics and will serve as an entry point for those starting their first research projects in the field.




The Magnetic Universe


Book Description

A main selection of Scientific American Book Club Magnetic fields permeate our vast universe, urging electrically charged particles on their courses, powering solar and stellar flares, and focusing the intense activity of pulsars and neutron stars. Magnetic fields are found in every corner of the cosmos. For decades, astrophysicists have identified them by their effects on visible light, radio waves, and x-rays. J. B. Zirker summarizes our deep knowledge of magnetism, pointing to what is yet unknown about its astrophysical applications. In clear, nonmathematical prose, Zirker follows the trail of magnetic exploration from the auroral belts of Earth to the farthest reaches of space. He guides readers on a fascinating journey of discovery to understand how magnetic forces are created and how they shape the universe. He provides the historical background needed to appreciate exciting new research by introducing readers to the great scientists who have studied magnetic fields. Students and amateur astronomers alike will appreciate the readable prose and comprehensive coverage of The Magnetic Universe.




Solar Magnetism


Book Description

This book highlights fundamentals and advances in the theories and observations of solar magnetic fields. Solar magnetism is an important part of solar physics and space weather research. It covers the formation, development, and relaxation of the magnetic fields in the solar eruptive process. The book discusses topics ranging from measurement facilities for solar observations to the evolution of solar magnetic fields, the storage of magnetic energy, and the magnetic helicity in the solar atmosphere and its relation with solar cycles. The book also presents recent advances in measurements and observations of solar magnetic shear, currents, magnetic helicity, and solar cycles. The book intends for astronomy-majored students and researchers interested in solar magnetism and its role in astrophysics.