Cosmic Plasma Physics


Book Description

This unusual book considers physical principles, starting from the most general ones, and simplifies assumptions, helping students answer two key questions: what approximation is the simplest, but still sufficient for the description of a phenomenon in cosmic plasmas, and how to build an adequate model.




Cosmic Plasma


Book Description

The general background of this monograph and the aim of it is described in detail in Chapter I. As stated in 1.7 it is written according to the principle that "when rigour appears to conflict with simplicity, simplicity is given preference", which means that it is intended for a rather broad public. Not only graduate students but also advanced undergraduates should be able to understand at least most of it. This monograph is the result of many years of inspiring discussions with a number of colleagues, for which I want to thank them very much. Especially I should mention the groups in Stockholm and La Jolla: in Stockholm, Dr Carl-Gunne Flilthammar and many of his collaborators, including Drs Lars Block, Per Carlqvist, Lennart lindberg, Michael Raadu, Staffan Torven, Miroslav Babic, and Itlgvar Axniis, and further, Drs Bo Lehnert and Bjorn Bonnevier, all at the Royal Institute of Technology. Of other col leagues in Sweden, I should mention Dr Bertel Laurent, Stockholm University, Dr Aina Elvius, The Stockholm Observatory, and Dr Bengt Hultqvist, Kiruna. In La Jolla my thanks go first of all to Dr Gustaf Arrhenius, who once invited me to La Jolla, which was the start of a most interesting collaboration; further, to Dr W.B.




Physics of the Plasma Universe


Book Description

During the past decade our understanding of plasma physics has witnessed an explosive growth due to research in two areas: work directed toward controlled nuclear fusion and work in space physics. This book addresses the growing need to apply these complementary discoveries to astrophysics. Today plasma is recognized as the key element to understanding the generation of magnetic fields in planets, stars and galaxies, the accel- eration and transport of cosmic rays, and many other phenomena occurring in interstellar space, in radio galaxies, stellar atmospheres, quasars, and so forth.




Plasma Physics for Astrophysics


Book Description

Designed to teach plasma physics and astrophysics 'from the ground up', this textbook proceeds from the simplest examples through a careful derivation of results and encourages the reader to think for themselves.







Plasma Physics of the Local Cosmos


Book Description

Solar and space physics is the study of solar system phenomena that occur in the plasma state. Examples include sunspots, the solar wind, planetary magnetospheres, radiation belts, and the aurora. While each is a distinct phenomenon, there are commonalities among them. To help define and systematize these universal aspects of the field of space physics, the National Research Council was asked by NASA's Office of Space Science to provide a scientific assessment and strategy for the study of magnetized plasmas in the solar system. This report presents that assessment. It covers a number of important research goals for solar and space physics. The report is complementary to the NRC report, The Sun to the Earthâ€"and Beyond: A Decadal Research Strategy for Solar and Space Physics, which presents priorities and strategies for future program activities.




Space Physics


Book Description

Observations and physical concepts are interwoven to give basic explanations of phenomena and also show the limitations in these explanations and identify some fundamental questions. Compared to conventional plasma physics textbooks this book focuses on the concepts relevant in the large-scale space plasmas. It combines basic concepts with current research and new observations in interplanetary space and in the magnetospheres. Graduate students and young researchers starting to work in this special field of science, will find the numerous references to review articles as well as important original papers helpful to orientate themselves in the literature. Emphasis is on energetic particles and their interaction with the plasma as examples for non-thermal phenomena, shocks and their role in particle acceleration as examples for non-linear phenomena. This second edition has been updated and extended. Improvements include: the use of SI units; addition of recent results from SOHO and Ulysses; improved treatment of the magnetosphere as a dynamic phenomenon; text restructured to provide a closer coupling between basic physical concepts and observed complex phenomena.




Basic Space Plasma Physics (Revised Edition)


Book Description

This textbook begins with a description of the Earth's plasma environment, followed by the derivation of single particle motions in electromagnetic fields, with applications to the Earth's magnetosphere. Also discussed are the origin and effects of collisions and conductivities, formation of the ionosphere, magnetospheric convection and dynamics, and solar wind-magnetosphere coupling.The second half of the book presents a more theoretical foundation of plasma physics, starting with kinetic theory. Introducing moments of distribution function permits the derivation of the fluid equations, followed by an analysis of fluid boundaries, with the Earth's magnetopause and bow shock as examples, and finally, fluid and kinetic theory are applied to derive the relevant wave modes in a plasma.This revised edition seamlessly integrates new sections on magnetopause reconstruction, as well as instability theory and thermal fluctuations based on new developments in space physics. Applications such as the important problems of collisionless reconnection and collisionless shocks are covered, and some problems have also been included at the end of each chapter.




An Introduction to Plasma Physics and Its Space Applications, Volume 1


Book Description

The growing number of scientific and technological applications of plasma physics in the field of Aerospace Engineering requires that graduate students and professionals understand their principles. This introductory book is the expanded version of class notes of lectures I taught for several years to students of Aerospace Engineering and Physics. It is intended as a reading guide, addressed to students and non-specialists to tackle later with more advanced texts. To make the subject more accessible the book does not follow the usual organization of standard textbooks in this field and is divided in two parts. The first introduces the basic kinetic theory (molecular collisions, mean free path, etc.) of neutral gases in equilibrium in connection to the undergraduate physics courses. The basic properties of ionized gases and plasmas (Debye length, plasma frequencies, etc.) are addressed in relation to their equilibrium states and the collisional processes at the microscopic level. The physical description of short and long-range (Coulomb) collisions and the more relevant collisions (elementary processes) between electrons' ions and neutral atoms or molecules are discussed. The second part introduces the physical description of plasmas as a statistical system of interacting particles introducing advanced concepts of kinetic theory, (non-equilibrium distribution functions, Boltzmann collision operator, etc). The fluid transport equations for plasmas of electron ions and neutral atoms and the hydrodynamic models of interest in space science and plasma technology are derived. The plasma production in the laboratory in the context of the physics of electric breakdown is also discussed. Finally, among the myriad of aerospace applications of plasma physics, the low pressure microwave electron multipactor breakdown and plasma thrusters for space propulsion are presented in two separate chapters.




Basic Principles Of Plasma Physics


Book Description

The book describes a statistical approach to the basics of plasma physics.