Cosmogenic Radionuclides


Book Description

Cosmogenic radionuclides are radioactive isotopes which are produced by natural processes and distributed within the Earth system. With a holistic view of the environment the authors show in this book how cosmogenic radionuclides can be used to trace and to reconstruct the history of a large variety of processes. They discuss the way in which cosmogenic radionuclides can assist in the quantification of complex processes in the present-day environment. The book aims to demonstrate to the reader the strength of analytic tools based on cosmogenic radionuclides, their contribution to almost any field of modern science, and how these tools may assist in the solution of many present and future problems that we face here on Earth. The book provides a comprehensive discussion of the basic principles behind the applications of cosmogenic (and other) radionuclides as environmental tracers and dating tools. The second section of the book discusses in some detail the production of radionuclides by cosmic radiation, their transport and distribution in the atmosphere and the hydrosphere, their storage in natural archives, and how they are measured. The third section of the book presents a number of examples selected to illustrate typical tracer and dating applications in a number of different spheres (atmosphere, hydrosphere, geosphere, biosphere, solar physics and astronomy). At the same time the authors have outlined the limitations of the use of cosmogenic radionuclides. Written on a level understandable by graduate students without specialist skills in physics or mathematics, the book addresses a wide audience, ranging from archaeology, biophysics, and geophysics, to atmospheric physics, hydrology, astrophysics and space science.




Cosmogenic Nuclides


Book Description

This is the first book to provide a comprehensive and state-of-the-art introduction to the novel and fast-evolving topic of in-situ produced cosmogenic nuclides. It presents an accessible introduction to the theoretical foundations, with explanations of relevant concepts starting at a basic level and building in sophistication. It incorporates, and draws on, methodological discussions and advances achieved within the international CRONUS (Cosmic-Ray Produced Nuclide Systematics) networks. Practical aspects such as sampling, analytical methods and data-interpretation are discussed in detail and an essential sampling checklist is provided. The full range of cosmogenic isotopes is covered and a wide spectrum of in-situ applications are described and illustrated with specific and generic examples of exposure dating, burial dating, erosion and uplift rates, and process model verification. Graduate students and experienced practitioners will find this book a vital source of information on the background concepts and practical applications in geomorphology, geography, soil-science, and geology.




Environmental Radionuclides


Book Description

Environmental Radionuclides presents a state-of-the-art summary of knowledge on the use of radionuclides to study processes and systems in the continental part of the Earth's environment. It is conceived as a companion to the two volumes of this series, which deal with isotopes as tracers in the marine environment (Livingston, Marine Radioactivity) and with the radioecology of natural and man-made terrestrial systems (Shaw, Radioactivity in Terrestrial Ecosystems). Although the book focuses on natural and anthropogenic radionuclides (radioactive isotopes), it also refers to stable environmental isotopes, which in a variety of applications, especially in hydrology and climatology, have to be consulted to evaluate radionuclide measurements in terms of the ages of groundwater and climate archives, respectively. The basic principles underlying the various applications of natural and anthropogenic radionuclides in environmental studies are described in the first part of the book. The book covers the two major groups of applications: the use of radionuclides as tracers for studying transport and mixing processes: and as time markers to address problems of the dynamics of such systems, manifested commonly as the so-called residence time in these systems. The applications range from atmospheric pollution studies, via water resource assessments to contributions to global climate change investigation. The third part of the book addresses new challenges in the development of new methodological approaches, including analytical methods and fields of applications. - A state-of-the-art summary of knowledge on the use of radionuclides - Conceived as a companion to the two volumes of this series, which deal with isotopes as tracers




Evaluation of Guidelines for Exposures to Technologically Enhanced Naturally Occurring Radioactive Materials


Book Description

Naturally occurring radionuclides are found throughout the earth's crust, and they form part of the natural background of radiation to which all humans are exposed. Many human activities-such as mining and milling of ores, extraction of petroleum products, use of groundwater for domestic purposes, and living in houses-alter the natural background of radiation either by moving naturally occurring radionuclides from inaccessible locations to locations where humans are present or by concentrating the radionuclides in the exposure environment. Such alterations of the natural environment can increase, sometimes substantially, radiation exposures of the public. Exposures of the public to naturally occurring radioactive materials (NORM) that result from human activities that alter the natural environment can be subjected to regulatory control, at least to some degree. The regulation of public exposures to such technologically enhanced naturally occurring radioactive materials (TENORM) by the US Environmental Protection Agency (EPA) and other regulatory and advisory organizations is the subject of this study by the National Research Council's Committee on the Evaluation of EPA Guidelines for Exposures to Naturally Occurring Radioactive Materials.




Isotopes


Book Description




Geochronology and Thermochronology


Book Description

This book is a welcome introduction and reference for users and innovators in geochronology. It provides modern perspectives on the current state-of-the art in most of the principal areas of geochronology and thermochronology, while recognizing that they are changing at a fast pace. It emphasizes fundamentals and systematics, historical perspective, analytical methods, data interpretation, and some applications chosen from the literature. This book complements existing coverage by expanding on those parts of isotope geochemistry that are concerned with dates and rates and insights into Earth and planetary science that come from temporal perspectives. Geochronology and Thermochronology offers chapters covering: Foundations of Radioisotopic Dating; Analytical Methods; Interpretational Approaches: Making Sense of Data; Diffusion and Thermochronologic Interpretations; Rb-Sr, Sm-Nd, Lu-Hf; Re-Os and Pt-Os; U-Th-Pb Geochronology and Thermochronology; The K-Ar and 40Ar/39Ar Systems; Radiation-damage Methods of Geo- and Thermochronology; The (U-Th)/He System; Uranium-series Geochronology; Cosmogenic Nuclides; and Extinct Radionuclide Chronology. Offers a foundation for understanding each of the methods and for illuminating directions that will be important in the near future Presents the fundamentals, perspectives, and opportunities in modern geochronology in a way that inspires further innovation, creative technique development, and applications Provides references to rapidly evolving topics that will enable readers to pursue future developments Geochronology and Thermochronology is designed for graduate and upper-level undergraduate students with a solid background in mathematics, geochemistry, and geology. "Geochronology and Thermochronology is an excellent textbook that delivers on the difficult balance between having an appropriate level of detail to be useful for an upper undergraduate to graduate-level class or research reference text without being too esoteric for a more general audience, with content and descriptions that are understandable and enlightening to the non-specialist. I would recommend this textbook for anyone interested in the history, principles, and mechanics of geochronology and thermochronology." --American Mineralogist, 2021 Read an interview with the editors to find out more: https://eos.org/editors-vox/the-science-of-dates-and-rates




Encyclopedia of Scientific Dating Methods


Book Description

This volume provides an overview of (1) the physical and chemical foundations of dating methods and (2) the applications of dating methods in the geological sciences, biology, and archaeology, in almost 200 articles from over 200 international authors. It will serve as the most comprehensive treatise on widely accepted dating methods in the earth sciences and related fields. No other volume has a similar scope, in terms of methods and applications and particularly time range. Dating methods are used to determine the timing and rate of various processes, such as sedimentation (terrestrial and marine), tectonics, volcanism, geomorphological change, cooling rates, crystallization, fluid flow, glaciation, climate change and evolution. The volume includes applications in terrestrial and extraterrestrial settings, the burgeoning field of molecular-clock dating and topics in the intersection of earth sciences with forensics. The content covers a broad range of techniques and applications. All major accepted dating techniques are included, as well as all major datable materials.




Radioactive Aerosols


Book Description

Whenever radioactivity is released to the atmosphere, for example by the detonation of nuclear weapons or the testing of nuclear weapons or from nuclear reactor accidents that fraction of it which remains airborne for more than a few hours is liable to be attached to aerosol particles. The resulting radioactive aerosols are carried by atmospheric mixing processes until they settle out or are scavenged by precipitation. The radiation exposure pathway of maximum concern to humans is by inhalation of aerosols and their deposition in the respiratory tract. In this context, it is important to note that radioactive aerosols are commonly of natural origin alos. In particular, the associated radionuclides can be of natural terrestrial origin, such as the decay products of radon gas, or they can e cosmogenic, such as beryllium-7. The exposure of miners of uranium and other ores and minerals to radon and its aerosol-borne decay products is of major significance. The book describes the formation of aerosols, their aerodynamic size distribution, their atmospheric residence time, their sampling and measurement, the range of radioactive aerosols found and studied thus far, including man-made nuclides and radon decay products and their interaction with man, including deposition in the lung and subsequent health effects. - Advanced level science handbook for researchers, scientists and academics - Covers all aspects of radiation exposure in humans, including subsequent health implications - Presents the latest findings and analysis in this highly topical area




Fukushima Accident


Book Description

Fukushima Accident presents up-to-date information on radioactivity released to the atmosphere and the ocean after the accident on the Fukushima Dai-ichi nuclear power plant, on the distribution of radionuclides in the world atmosphere and oceans, and their impact on the total environment (man, fauna, and flora). The book will evaluate and discuss the post-Fukushima situation, emphasizing radionuclide impacts on the terrestrial and marine environments, and compare it with the pre-Fukushima sources of radionuclides in the environment. The authors' results, as well as knowledge gathered from the literature, will provide up-to-date information on the present status of the topics. Fukushima Accident is based on the environmental and nuclear research; however, the presentation will be suitable for university-level readers. - 2013 PROSE Award winner in Environmental Science from the Association of American Publishers - Covers atmospheric and marine radioactivity, providing information on the global atmospheric dispersion of radionuclides in the atmosphere and world oceans - Examines radiation doses to the public and biota to understand the health risks to the public and ecosystems - Provides information on monitoring radionuclides in the environment – information on sources of radionuclides, their temporal and spatial variations, and radionuclide levels - Covers transport of radionuclides from different sources (e.g. nuclear power plants) as well as atmospheric simulations and modeling approaches




Tectonic Geomorphology


Book Description

Tectonic geomorphology is the study of the interplay between tectonic and surface processes that shape the landscape in regions of active deformation and at time scales ranging from days to millions of years. Over the past decade, recent advances in the quantification of both rates and the physical basis of tectonic and surface processes have underpinned an explosion of new research in the field of tectonic geomorphology. Modern tectonic geomorphology is an exceptionally integrative field that utilizes techniques and data derived from studies of geomorphology, seismology, geochronology, structure, geodesy, stratigraphy, meteorology and Quaternary science. While integrating new insights and highlighting controversies from the ten years of research since the 1st edition, this 2nd edition of Tectonic Geomorphology reviews the fundamentals of the subject, including the nature of faulting and folding, the creation and use of geomorphic markers for tracing deformation, chronological techniques that are used to date events and quantify rates, geodetic techniques for defining recent deformation, and paleoseismologic approaches to calibrate past deformation. Overall, this book focuses on the current understanding of the dynamic interplay between surface processes and active tectonics. As it ranges from the timescales of individual earthquakes to the growth and decay of mountain belts, this book provides a timely synthesis of modern research for upper-level undergraduate and graduate earth science students and for practicing geologists. Additional resources for this book can be found at: www.wiley.com/go/burbank/geomorphology.