Cotton Fibres


Book Description

Cottons importance as a crop and as a textile fibre is still significant. However, its importance has been and will continue to be seriously challenged by the growth in consumption of man-made fibre, particularly polyester. This book is divided into three parts. The first part, covering seven chapters, describes the chemical and physical properties of cotton fibre. These chapters focus on the differences between cotton and polyester fibre properties, and highlight areas researchers will need to pursue to keep cotton competitive. Two lesser discussed properties receive attention: Cotton fibres wax layer and cotton celluloses glass transition temperature. The hydrophobic wax layer that protects cotton during mechanical processing and aids the dispersal of its seed by water, has been central in the development of the spinning technology used by cotton and polyester fibre alike. The wax provides lubrication between the fibre surface and the processing surfaces during opening, carding and spinning. The chapter on cotton celluloses glass transition temperature introduces the less appreciated concept that cottons cellulose can be plasticised at particular temperatures and moisture contents, wherein cottons mechanical properties, e.g. elongation to break, can be improved. The range of fibre property values and the variation found in cotton stand as markers for future researchers to improve by way of plant and crop management, breeding (including genetic modification), and chemical processing. Long standing objectives include longer, stronger and finer fibre, which all translate to better looking and performing yarn and fabric. However, properties that give cotton fabric improved resilience, drape and dyed-colour appearance also stand as objectives to improve cottons competitiveness. The second part of the book introduces uses of cotton that are less considered; cotton nonwovens, bandages impregnated with natural anti-microbial agents and cellulose aerogels are products with excellent potential, and deserve further research and development. Standard textile products are not discussed in this section. These are discussed in the third and final part of the book. The final four chapters focus on the current performance of cotton in different apparel and home furnishing markets, in the commodity marketplace, and in spinning and dyeing. These final chapters point to a challenging future for cotton if the industry and its researchers curtail their pursuit of better crop productivity, fibre quality, processing technology and product development.




Cotton


Book Description

Despite the increased variety of manufactured fibres available to the textile industry, demand for cotton remains high because of its suitability on the basis of price, quality and comfort across a wide range of textile products. Cotton producing nations are also embracing sustainable production practices to meet growing consumer demand for sustainable resource production. This important book provides a comprehensive analysis of the key scientific and technological advances that ensure the quality of cotton is maintained from the field to fabric.The first part of the book discusses the fundamental chemical and physical structure of cotton and its various properties. Advice is offered on measuring and ensuring the quality of cotton fibre. Building on these basics, Part two analyses various means for producing cotton such as genetic modification and organic production. Chapters focus on spinning, knitting and weaving technologies as well as techniques in dyeing. The final section of the book concludes with chapters concerned with practical aspects within the industry such as health and safety issues and recycling methods for used cotton.Written by an array of international experts within the field, Cotton: science and technology is an essential reference for all those concerned with the manufacture and quality control of cotton. - Summarises key scientific and technological issues in ensuring cotton quality - Discusses the fundamental chemical and physical structure of cotton - Individual chapters focus on spinning, knitting and weaving technologies







Handbook of Natural Fibres


Book Description

Growing awareness of environmental issues has led to increasing demand for goods produced from natural products, including natural fibres. The two-volume Handbook of natural fibres is an indispensible tool in understanding the diverse properties and applications of these important materials. Volume 1: Types, properties and factors affecting breeding and cultivation is an essential guide to a wide range of natural fibres, and highlights key techniques for their improvement.Part one reviews key types and fundamental properties of natural textile fibres. The production, identification and testing of a range of cotton, bast, silk and wool fibres are discussed, alongside bioengineered natural textile fibres. Part two goes on to explore the improvement of natural fibre properties and production through breeding and cultivation, beginning with a discussion of fibrous flax and cotton. Improved natural fibre production through the prevention of fungal growth is explored, along with the use of genetic engineering and biotechnology to enhance desirable characteristics. Finally, the wider impact of natural textile production is discussed, using wild silk enterprise programs as an example.With its distinguished editor and international team of expert contributors, the two volumes of the Handbook of natural fibres are essential texts for professionals and academics in textile science and technology. - Provides an essential guide to a wide range of natural fibres and highlights key techniques for their improvement - Reviews key types and fundamental properties of natural textile fibres, addressing the production, identification and testing of a range of cotton, bast, silk and wool fibres - Explores the improvement of natural fibre properties and production through breeding and cultivation, beginning with a discussion of fibrous flax and cotton










Cotton


Book Description




Handbook of Properties of Textile and Technical Fibres


Book Description

Handbook of Properties of Textile and Technical Fibres, Second Edition introduces tensile properties and failure and testing of fibers, also examining tensile properties and the failure of natural fibers, such as cotton, hemp, flax, agave, wool and silk. Next, the book discusses the tensile properties and failure of synthetic fibers, ranging from polyamide, polyester, polyethylene and carbon fibers. Chapters provide a general background of the fiber, including its manufacture, microstructure, factors that affect tensile properties and methods to improve tensile failure. With its distinguished editor and international contributors, this book is an important reference for fiber scientists, textile technologists, engineers and academics. - Offers up-to-date coverage of new and advanced materials for the fiber and textile industries - Reviews structure-property relationships of high-performance natural, synthetic polymer and inorganic fibers - Offers a range of perspectives on the tensile properties of fibers from an international team of authors with diverse expertise in academic research and in textile development and manufacture




Technical Organic and Inorganic Fibres from Natural Resources


Book Description

Technical Organic and Inorganic Fibres from Natural Resources focuses on recent advances in the synthesis, processing, characterization, and application of non-textile fibers. The book provides a general introduction to the uses of natural fibers in technical textile applications while also reviewing the latest technical methods for producing these high-performance materials. As the textile industry is focused on finding alternative green fibers with the aim of providing high quality products which are fully recyclable and biodegradable, natural fibers from renewable sources play an increasingly important role in the industry due to their unique properties and functionality. - Covers the full range of fibers from natural sources, including organic materials like chitosan as well as inorganic ones like carbon nanofibers - Includes an overview of EPA regulations on hazardous natural fibers - Industry case studies are provided throughout to explain production methods and applications




Chemistry of Textile Fibres


Book Description

Textiles are ubiquitous materials that many of us take for granted in our everyday lives. We rely on our clothes to protect us from the environment and use them to enhance our appearance. Textiles also find applications in transport, healthcare, construction, and many other industries. The revised and updated 2nd Edition of The Chemistry of Textile Fibres highlights the trend towards the synthesis, from renewable resources, of monomers for making synthetic fibres. It contains new information on the influence of legislation and the concerns of environmental organisations on the use of chemicals in the textile industry. New sections on genetically modified cotton, anti-microbial materials and spider silk have been added as well as a new chapter covering functional fibres and fabrics. This book provides a comprehensive overview of the various types of textile fibres that are available today, ranging from natural fibres to the high-performance fibres that are very technologically advanced. Readers will gain an appreciation of why particular types of fibre are used for certain applications through understanding the chemistry behind their properties. Students following ‘A’ level courses or equivalent and first-year undergraduate students reading textile technology subjects at university will find this book a valuable source of information.