Coupled Dynamics in Soil


Book Description




Coupled Dynamics in Soil


Book Description

In arid and semi-arid areas, the main contributions to land surface processes are precipitation, surface evaporation and surface energy balancing. In the close-to-surface layer and root-zone layer, vapor flux is the dominant flux controlling these processes - process which, in turn, influence the local climate pattern and the local ecosystem. The work reported in this thesis attempts to understand how the soil airflow affects the vapor transport during evaporation processes, by using a two-phase heat and mass transfer model. The necessity of including the airflow mechanism in land surface process studies is discussed and highlighted.










An Introduction to Soil Dynamics


Book Description

to Soil Dynamics Arnold Verruijt Delft University of Technology, Delft, The Netherlands Arnold Verruijt Delft University of Technology 2628 CN Delft Netherlands [email protected] A CD-ROM accompanies this book containing programs for waves in piles, propagation of earthquakes in soils, waves in a half space generated by a line load, a point load, a strip load, or a moving load, and the propagation of a shock wave in a saturated elastic porous material. Computer programs are also available from the website http://geo.verruijt.net ISBN 978-90-481-3440-3 e-ISBN 978-90-481-3441-0 DOI 10.1007/978-90-481-3441-0 Springer Dordrecht Heidelberg London New York Library of Congress Control Number: 2009940507 © Springer Science+Business Media B.V. 2010 No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, micro?lming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied speci?cally for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Preface This book gives the material for an introductory course on Soil Dynamics, as given for about 10 years at the Delft University of Technology for students of civil en- neering, and updated continuously since 1994.










Vehicle–Track Coupled Dynamics


Book Description

This book systematically presents the theory, numerical implementation, field experiments and practical engineering applications of the ‘Vehicle–Track Coupled Dynamics’. Representing a radical departure from classic vehicle system dynamics and track dynamics, the vehicle–track coupled dynamics theory considers the vehicle and track as one interactive and integrated system coupled through wheel–rail interaction. This new theory enables a more comprehensive and accurate solution to the train–track dynamic interaction problem which is a fundamental and important research topic in railway transportation system, especially for the rapidly developed high-speed and heavy-haul railways. It has been widely applied in practical railway engineering. Dr. Wanming Zhai is a Chair Professor of Railway Engineering at Southwest Jiaotong University, where he is also chairman of the Academic Committee and Director of the Train and Track Research Institute. He is a member of the Chinese Academy of Sciences and one of the leading scientists in railway system dynamics. Professor Zhai is Editor-in-Chief of both the International Journal of Rail Transportation, published by Taylor & Francis Group, and the Journal of Modern Transportation, published by Springer. In addition, he is a trustee of the International Association for Vehicle System Dynamics, Vice President of the Chinese Society of Theoretical and Applied Mechanics, and Vice President of the Chinese Society for Vibration Engineering. /div




Saline and Sodic Soils


Book Description

In keeping with the spirit of an Advanced Series in the Agricultural Sciences, we have attempted to address herein most of the current research areas being used to characterize, describe and manage salt-affected soils. Because of a certain amount of personal bias inherent in our individual viewpoints and backgrounds, some areas have been accorded more emphasis than others. It has been our goal, however, to provide either detail about, or at least a recent reference to, each major area of current soil salinity research. This information, coupled with what we hope to be a rather logical progression from descriptive material on equilibrium or near-equilibrium soil chemistry, through transport processes, to eventual management practices including some elementary economic decisions, should enable the reader to bridge the gap from introductory soil chemistry or soil physics texts to the basic literature of this area. The text will be perceived by the astute reader as somewhat uneven in its treatment of respective sections. We feel that this is to a certain extent appropriate, for it thus portrays the unevenness of progress to date in the corresponding areas of research. The management of saline and sodic soils remains largely an empirical semi-science or even art, whereas transport phenomena are normally dealt with in a much more theoretical (and also a much more highly mathematical) vein. Equilibrium soil chemistry has historically occupied an intermediate position with respect to its mix of empiricism and theoretical rigor.