Thermal-Hydraulics of Water Cooled Nuclear Reactors


Book Description

Thermal Hydraulics of Water-Cooled Nuclear Reactors reviews flow and heat transfer phenomena in nuclear systems and examines the critical contribution of this analysis to nuclear technology development. With a strong focus on system thermal hydraulics (SYS TH), the book provides a detailed, yet approachable, presentation of current approaches to reactor thermal hydraulic analysis, also considering the importance of this discipline for the design and operation of safe and efficient water-cooled and moderated reactors. Part One presents the background to nuclear thermal hydraulics, starting with a historical perspective, defining key terms, and considering thermal hydraulics requirements in nuclear technology. Part Two addresses the principles of thermodynamics and relevant target phenomena in nuclear systems. Next, the book focuses on nuclear thermal hydraulics modeling, covering the key areas of heat transfer and pressure drops, then moving on to an introduction to SYS TH and computational fluid dynamics codes. The final part of the book reviews the application of thermal hydraulics in nuclear technology, with chapters on V&V and uncertainty in SYS TH codes, the BEPU approach, and applications to new reactor design, plant lifetime extension, and accident analysis. This book is a valuable resource for academics, graduate students, and professionals studying the thermal hydraulic analysis of nuclear power plants and using SYS TH to demonstrate their safety and acceptability. - Contains a systematic and comprehensive review of current approaches to the thermal-hydraulic analysis of water-cooled and moderated nuclear reactors - Clearly presents the relationship between system level (top-down analysis) and component level phenomenology (bottom-up analysis) - Provides a strong focus on nuclear system thermal hydraulic (SYS TH) codes - Presents detailed coverage of the applications of thermal-hydraulics to demonstrate the safety and acceptability of nuclear power plants




Super Light Water Reactors and Super Fast Reactors


Book Description

Super Light Water Reactors and Super Fast Reactors provides an overview of the design and analysis of nuclear power reactors. Readers will gain the understanding of the conceptual design elements and specific analysis methods of supercritical-pressure light water cooled reactors. Nuclear fuel, reactor core, plant control, plant stand-up and stability are among the topics discussed, in addition to safety system and safety analysis parameters. Providing the fundamentals of reactor design criteria and analysis, this volume is a useful reference to engineers, industry professionals, and graduate students involved with nuclear engineering and energy technology.




High Performance Light Water Reactor


Book Description

Results of the project "High Performance Light Water Reactor--Phase 2," carried out September 2006-February 2010 as part of the 6th European Framework Program.







Handbook on Thermal Hydraulics in Water-Cooled Nuclear Reactors


Book Description

Handbook on Thermal Hydraulics of Water-Cooled Nuclear Reactors, Volume 3, Procedures and Applications includes all new chapters which delve deeper into the topic, adding context and practical examples to help readers apply learnings to their own setting. Topics covered include experimental thermal-hydraulics and instrumentation, numerics, scaling and containment in thermal-hydraulics, as well as a title dedicated to good practices in verification and validation. This book will be a valuable reference for graduate and undergraduate students of nuclear or thermal engineering, as well as researchers in nuclear thermal-hydraulics and reactor technology, engineers working in simulation and modeling of nuclear reactors, and more. In addition, nuclear operators, code developers and safety engineers will also benefit from the practical guidance provided. - Presents a comprehensive analysis on the connection between nuclear power and thermal hydraulics - Includes end-of-chapter questions, quizzes and exercises to confirm understanding and provides solutions in an appendix - Covers applicable nuclear reactor safety considerations and design technology throughout




Proceedings of The 20th Pacific Basin Nuclear Conference


Book Description

This is the third in a series of three proceedings of the 20th Pacific Basin Nuclear Conference (PBNC). This volume covers the topics of Power Reactor and New Buildings, Waste Management, Acquiring Medical and Biological Benefits and Student program. As one in the most important and influential conference series of nuclear science and technology, the 20th PBNC was held in Beijing and the theme of this meeting was “Nuclear: Powering the Development of the Pacific Basin and the World”. It brought together outstanding nuclear scientist and technical experts, senior industry executives, senior government officials and international energy organization leaders from all across the world. The book serves as a useful reference not only for the professionals and public to know more about nuclear industry, but also for policymakers to adjust or make energy strategies.




Study on Specifics of Thermalhydraulics and Neutronics of Pressure-channel Supercritical Water-cooled Reactors (SCWRs).


Book Description

A group of countries has initiated an international collaboration to develop a next generation (i.e., Generation IV) of nuclear reactors. Chosen as one of the six Generation-IV nuclear-reactor concepts, the SCWRs are expected to have high thermal efficiencies within the range of 40 - 50% owing to reactor's high outlet temperatures. The Canadian pressure-tube-type SCWR is featured with 3-batch refueling, 336 vertical fuel channels, a porous ceramic insulator inside the pressure tube, and stainless-steel cladding. The reactor operates at a pressure of 25 MPa with the coolant temperature rising from 350 to 625°C. Consequently, sheath and fuel centerline temperatures are significantly higher in SCWRs compared to those of the current water-cooled nuclear reactors. The main objective of this thesis is to conduct a study on specifics of the thermalhydraulics and neutronics of a pressure-tube SCWR based on an understanding of the supercritical water phenomena and their impacts on reactor design and operation. This thesis investigates the impact of several thermalhydraulic modeling parameters on fuel and cladding temperatures of a pressure-tube SCWR. The investigated thermalhydraulic modeling parameters are: 1) variable heat transfer coefficient, which is affected by thermophysical properties of supercritical water, axial heat flux, and three heat-transfer regimes: normal, improved and deteriorated; 2) thermophysical properties, which are affected by the bulk-fluid-temperature profile along the heated length and pressure drop along the fuel channel; 3) variable axial and radial heat-flux profiles of a fuel assembly (bundle string), which are affected by the neutron flux; 4) radial non-uniform heat generation inside the fuel; 5) axial and radial variable thermal conductivity of a fuel; 6) contact thermal resistance between the fuel and cladding; 7) heat loss from the coolant to the moderator, which is affected by the thermal conductivity of a ceramic insert; and 8) pressure drop of the coolant along the fuel channel. The main neutronic aspects, which have been incorporated in the neutronic model, include 1) variable coolant density along the heated length of the fuel channel, which affects neutronic properties of a lattice and, hence, the neutron flux and 2) number of energy groups, which affects the calculated channel powers.




Thermal-Hydraulic Analysis of Nuclear Reactors


Book Description

This revised text covers the fundamentals of thermodynamics required to understand electrical power generation systems and the application of these principles to nuclear reactor power plant systems. The book begins with fundamental definitions of units and dimensions, thermodynamic variables and the Laws of Thermodynamics progressing to sections on specific applications of the Brayton and Rankine cycles for power generation and projected reactor systems design issues. It is not a traditional general thermodynamics text, per se, but a practical thermodynamics volume intended to explain the fundamentals and apply them to the challenges facing actual nuclear power plants systems, where thermal hydraulics comes to play. There have been significant new findings for intercooled systems since the previous edition published and they will be included in this volume. New technology plans for using a Nuclear Air-Brayton as a storage system for a low carbon grid are presented along with updated component sizes and performance criteria for Small Modular Reactors. Written in a lucid, straight-forward style while retaining scientific rigor, the content is accessible to upper division undergraduate students and aimed at practicing engineers in nuclear power facilities and engineering scientists and technicians in industry, academic research groups, and national laboratories. The book is also a valuable resource for students and faculty in various engineering programs concerned with nuclear reactors.