Introduction à la géométrie hyperbolique et aux surfaces de Riemann


Book Description

Avec ce livre, les auteurs ont voulu présenter une introduction élémentaire à des notions qui servent depuis longtemps de base à des recherches en mathématiques (géométrie différentielle et géométrie algébrique) et en physique théorique. On peut noter que le plan hyperbolique (introduit par Lobatchevski en 1826) d'une part, les surfaces de Riemann (1851) d'autre part, sont les premiers exemples d'objets géométriques qui ne se présentent pas comme des figures de l'espace usuel, mais au contraire se substituent à lui, devenant ainsi le lieu d'une nouvelle géométrie. Le lien entre ces deux notions fut découvert par Poincaré en 1881. Les objets d'étude proposés dans ce livre sont d'abord les géodésiques et les horocycles du plan hyperbolique, ses isométries, puis les courbes du plan hyperbolique et leur courbure. Un chapitre est ensuite consacré aux espaces hyperbolique de dimension 3 et plus. Dans la partie sur les surfaces de Riemann, les auteurs proposent notamment l'étude des revêtements ramifiés, puis celle de la classification des surfaces par le genre et par la nature du revêtement universel (c'est là que se fait le lien avec le plan hyperbolique) ; la classification plus fine des structures conformes est abordée dans le cas du tore, ce qui donne l'occasion de présenter la théorie des fonctions elliptiques, et de l'anneau, où on déduit de la classification le grand théorème de Picard. Plusieurs applications à la théorie des surfaces minimales de l'espace euclidien sont données en complément. Cette introduction à la géométrie hyperbolique et aux surfaces de Riemann est la première qui mette ces deux sujets à la portée d'étudiants de M1 (quatrième année) de mathématiques, sans exiger d'eux plus qu'une connaissance de la géométrie euclidienne et une familiarité minimale avec les fonctions analytiques. L'ouvrage comporte 117 exercices, avec des indications.







Topics in the Theory of Riemann Surfaces


Book Description

The book's main concern is automorphisms of Riemann surfaces, giving a foundational treatment from the point of view of Galois coverings, and treating the problem of the largest automorphism group for a Riemann surface of a given genus. In addition, the extent to which fixed points of automorphisms are generalized Weierstrass points is considered. The extremely useful inequality of Castelnuovo- Severi is also treated. While the methods are elementary, much of the material does not appear in the current texts on Riemann surfaces, algebraic curves. The book is accessible to a reader who has had an introductory course on the theory of Riemann surfaces or algebraic curves.




Frontiers in Number Theory, Physics, and Geometry II


Book Description

Ten years after a 1989 meeting of number theorists and physicists at the Centre de Physique des Houches, a second event focused on the broader interface of number theory, geometry, and physics. This book is the first of two volumes resulting from that meeting. Broken into three parts, it covers Conformal Field Theories, Discrete Groups, and Renormalization, offering extended versions of the lecture courses and shorter texts on special topics.




Riemann Surfaces by Way of Complex Analytic Geometry


Book Description

This book establishes the basic function theory and complex geometry of Riemann surfaces, both open and compact. Many of the methods used in the book are adaptations and simplifications of methods from the theories of several complex variables and complex analytic geometry and would serve as excellent training for mathematicians wanting to work in complex analytic geometry. After three introductory chapters, the book embarks on its central, and certainly most novel, goal of studying Hermitian holomorphic line bundles and their sections. Among other things, finite-dimensionality of spaces of sections of holomorphic line bundles of compact Riemann surfaces and the triviality of holomorphic line bundles over Riemann surfaces are proved, with various applications. Perhaps the main result of the book is Hormander's Theorem on the square-integrable solution of the Cauchy-Riemann equations. The crowning application is the proof of the Kodaira and Narasimhan Embedding Theorems for compact and open Riemann surfaces. The intended reader has had first courses in real and complex analysis, as well as advanced calculus and basic differential topology (though the latter subject is not crucial). As such, the book should appeal to a broad portion of the mathematical and scientific community. This book is the first to give a textbook exposition of Riemann surface theory from the viewpoint of positive Hermitian line bundles and Hormander $\bar \partial$ estimates. It is more analytical and PDE oriented than prior texts in the field, and is an excellent introduction to the methods used currently in complex geometry, as exemplified in J. P. Demailly's online but otherwise unpublished book ``Complex analytic and differential geometry.'' I used it for a one quarter course on Riemann surfaces and found it to be clearly written and self-contained. It not only fills a significant gap in the large textbook literature on Riemann surfaces but is also rather indispensible for those who would like to teach the subject from a differential geometric and PDE viewpoint. --Steven Zelditch




An Introduction to Riemann Surfaces


Book Description

This textbook presents a unified approach to compact and noncompact Riemann surfaces from the point of view of the so-called L2 $\bar{\delta}$-method. This method is a powerful technique from the theory of several complex variables, and provides for a unique approach to the fundamentally different characteristics of compact and noncompact Riemann surfaces. The inclusion of continuing exercises running throughout the book, which lead to generalizations of the main theorems, as well as the exercises included in each chapter make this text ideal for a one- or two-semester graduate course.