Covariant Physics


Book Description

A textbook for 2nd and 3rd year undergraduate students using the fundamental principle of covariance as a basis for studying classical mechanics, electrodynamics, the special theory of relativity, and the general theory of relativity, before moving on to more advanced topics of field theory, differential forms, and modified theories of gravity.




Classical Covariant Fields


Book Description

This 2002 book discusses the classical foundations of field theory, using the language of variational methods and covariance, and relating the subject to quantum field theory. Ideal as a supplementary text for graduate courses on elementary field theory, group theory and dynamical systems. Also a valuable reference for researchers.




Tensor Calculus for Physics


Book Description

It is an ideal companion for courses such as mathematical methods of physics, classical mechanics, electricity and magnetism, and relativity.--Gary White, editor of The Physics Teacher "American Journal of Physics"




Covariant Loop Quantum Gravity


Book Description

A comprehensible introduction to the most fascinating research in theoretical physics: advanced quantum gravity. Ideal for researchers and graduate students.




Covariant Physics


Book Description

Covariant Physics: From Classical Mechanics to General Relativity and Beyond endeavours to provide undergraduate students as well as self-learners with training in the fundamentals of the modern theories of spacetime, most notably the general theory of relativity as well as physics in curved spacetime backgrounds in general. This text does so with the barest of mathematical preparation. In fact, very little beyond multivariable calculus and a bit of linear algebra is assumed. Throughout this textbook, the main theme tying the various topics is the so-called principle of covariance - a fundamental symmetry of physics that one rarely encounters in undergraduate texts. The material is introduced very gradually, starting with the simplest of high school mathematics, and moving through the more intense notions of tensor calculus, geometry, and differential forms with ease. Familiar notions from classical mechanics and electrodynamics are used to increase familiarity with the advanced mathematical ideas, and to emphasize the unity of all of physics under the single principle of covariance. The mathematical and physical techniques developed in this book should allow students to perform research in various fields of theoretical physics as early as their sophomore year in college. The language the reader will learn in this book is the foundational mathematical language of many modern branches of physics, and as such should allow them to read and generally understand many modern physics papers.




Covariant Electrodynamics


Book Description

A notoriously difficult subject, covariant electrodynamics is nonetheless vital for understanding relativistic field theory. John M. Charap’s classroom-tested introduction to the mathematical foundations of the topic presents the material in an approachable manner. Charap begins with a historical overview of electrodynamics and a discussion of the preliminary mathematics one needs in order to grasp the advanced and abstract concepts underlying the theory. He walks the reader through Maxwell’s four equations, explaining how they were developed and demonstrating how they are applied. From there, Charap moves through the other components of electrodynamics, such as Lorentz transformations, tensors, and charged particle behavior. At each point, he carefully works through the mathematics, applies the concepts to simple physical systems, and provides historical context that makes clear the connections among the theories and the mathematicians responsible for developing them. A concluding chapter reviews the history of electrodynamics and points the way for independent testing of the theory. Thorough, evenly paced, and intuitive, this friendly introduction to high-level covariant electrodynamics is a handy and helpful addition to any physicist’s toolkit.




Physics of the Lorentz Group


Book Description

This book explains the Lorentz mathematical group in a language familiar to physicists. While the three-dimensional rotation group is one of the standard mathematical tools in physics, the Lorentz group of the four-dimensional Minkowski space is still very strange to most present-day physicists. It plays an essential role in understanding particles moving at close to light speed and is becoming the essential language for quantum optics, classical optics, and information science. The book is based on papers and books published by the authors on the representations of the Lorentz group based on harmonic oscillators and their applications to high-energy physics and to Wigner functions applicable to quantum optics. It also covers the two-by-two representations of the Lorentz group applicable to ray optics, including cavity, multilayer and lens optics, as well as representations of the Lorentz group applicable to Stokes parameters and the Poincaré sphere on polarization optics.




Topics In Mathematical Physics General Relativity And Cosmology In Honor Of Jerzy Plebanski - Proceedings Of 2002 International Conference


Book Description

One of modern science's most famous and controversial figures, Jerzy Plebanski was an outstanding theoretical physicist and an author of many intriguing discoveries in general relativity and quantum theory. Known for his exceptional analytic talents, explosive character, inexhaustible energy, and bohemian nights with brandy, coffee, and enormous amounts of cigarettes, he was dedicated to both science and art, producing innumerable handwritten articles — resembling monk's calligraphy — as well as a collection of oil paintings.As a collaborator but also an antagonist of Leopold Infeld's (a coauthor of Albert Einstein's), Plebanski is recognized for designing the “heavenly” and “hyper-heavenly” equations, for introducing new variables to describe the gravitational field, for the exact solutions in Einstein's gravity and in quantum theory, for his classification of the tensor of matter, for some outstanding results in nonlinear electrodynamics, and for analyzing general relativity with continuous sources long before Chandrasekhar et al.A tribute to Plebański's contributions and the variety of his interests, this is a unique and wide-ranging collection of invited papers, covering gravity quantization, strings, branes, supersymmetry, ideas on the deformation quantization, and lesser known results on the continuous Baker-Campbell-Hausdorff problem.




Formal Structure of Electromagnetics


Book Description

High-level, explicit treatment of the principle of general covariance as applied to electromagnetics examines the natural invariance of the Maxwell equations, general properties of the medium, nonuniformity, anisotropy and general coordinates in three-space, reciprocity and nonreciprocity, and matter-free space with a gravitational field. 1962 edition.




Einstein's Physics


Book Description

Many regard Albert Einstein as the greatest physicist since Newton. What exactly did he do that is so important in physics? We provide an introduction to his physics at a level accessible to an undergraduate physics student. All equations are worked out in detail from the beginning. Einstein's doctoral thesis and his Brownian motion paper were decisive contributions to our understanding of matter as composed of molecules and atoms. Einstein was one of the founding fathers of quantum theory: his photon proposal through the investigation of blackbody radiation, his quantum theory of photoelectric effect and specific heat, his calculation of radiation fluctuation giving the first statement of wave-particle duality, his introduction of probability in the description of quantum radiative transitions, and finally the quantum statistics and Bose-Einstein condensation. Einstein's special theory of relativity gave us the famous E=mc2 relation and the new kinematics leading to the idea of the 4-dimensional spacetime as the arena in which physical events take place. Einstein's geometric theory of gravity, general relativity, extends Newton's theory to time-dependent and strong gravitational fields. It laid the ground work for the study of black holes and cosmology. This is a physics book with material presented in the historical context. We do not stop at Einstein's discovery, but carry the discussion onto some of the later advances: Bell's theorem, quantum field theory, gauge theories and Kaluza-Klein unification in a spacetime with an extra spatial dimension. Accessibility of the material to a modern-day reader is the goal of our presentation. Although the book is written with primarily a physics readership in mind (it can also function as a textbook), enough pedagogical support material is provided that anyone with a solid background in introductory physics can, with some effort, understand a good part of this presentation.