Cracking the Quantum Code of the Universe


Book Description

If the new boson is indeed the Higgs particle, its discovery represents an important milestone in the history of particle physics. However, despite the pressure to award Nobel Prizes to physicists associated with the Higgs boson, John Moffat argues that there still remain important data analyses to be performed before uncorking the champagne. John Moffat is Professor Emeritus of Physics at the University of Toronto and a senior researcher at the Perimeter Institute for Theoretical Physics. Well-known for his outside-the-box research on topics such as dark matter, dark energy, and the varying speed of light cosmology (VSL), his new book takes a critical look at the hype surrounding the Higgs boson. In the process, he presents a cogent and often entertaining history of particle physics and an exploration of alternative theories of particle physics that do not feature the Higgs boson, including his own. He gives a detailed and personal description of how theoretical physicists come up with new theories, and emphasizes how carefully experimental physicists must interpret the complex data now coming out of accelerators like the Large Hadron Collider (LHC). The book does not shy away from controversial topics such as the sociology of particle physics. There is immense pressure on projects like the $9 billion LHC to come up with positive results in order to secure funding for the future. Yet to date, the Higgs boson may be the only positive result to emerge from the LHC experiments. The searches for dark matter particles, mini-black holes, extra dimensions, and supersymmetric particles have all come up empty-handed, with serious consequences for theoretical physics, including string theory and gravity theory. John Moffat is also the author of Reinventing Gravity (2008) and Einstein Wrote Back (2010).




Cracking the Code of Our Physical Universe


Book Description

What sets this book apart is the fact that it is not just another science book describing scientific facts and phenomena! It would surely be redundant since that task has been done many times over with much more elegant prose and brighter narrators. In this book, for the first time we have undertaken the task of breaking the code of any piece of matter or natural phenomena; whether it is an atom, a quantum occurance, a planet, a galaxy, or any other perceivable thing. It covers any natural phenomena ever discovered or one that will be unravelled by the future pioneers in their respective fields. This book provides the trail map of any and all things that man has discovered and shows how their codes were cracked. The list of discoveries is endless but prominent amongst them are the discovery of fire, elecricity, magnetism, laws of motion, the solar system and planets, so on and so forth. This book goes beyond just pure science since it fuses philosophy with science. It actually makes science a subset of philosophy, or more precisely, applied philosophy. Just like the light phenomenon, which was made to be a subset of the field of electricity by James Clerk Maxwell, revolutionizing our technical world, so does this book by bringing a new era of incredible developments for mankind!




Cracking the Einstein Code


Book Description

Albert Einstein’s theory of general relativity describes the effect of gravitation on the shape of space and the flow of time. But for more than four decades after its publication, the theory remained largely a curiosity for scientists; however accurate it seemed, Einstein’s mathematical code—represented by six interlocking equations—was one of the most difficult to crack in all of science. That is, until a twenty-nine-year-old Cambridge graduate solved the great riddle in 1963. Roy Kerr’s solution emerged coincidentally with the discovery of black holes that same year and provided fertile testing ground—at long last—for general relativity. Today, scientists routinely cite the Kerr solution, but even among specialists, few know the story of how Kerr cracked Einstein’s code. Fulvio Melia here offers an eyewitness account of the events leading up to Kerr’s great discovery. Cracking the Einstein Code vividly describes how luminaries such as Karl Schwarzschild, David Hilbert, and Emmy Noether set the stage for the Kerr solution; how Kerr came to make his breakthrough; and how scientists such as Roger Penrose, Kip Thorne, and Stephen Hawking used the accomplishment to refine and expand modern astronomy and physics. Today more than 300 million supermassive black holes are suspected of anchoring their host galaxies across the cosmos, and the Kerr solution is what astronomers and astrophysicists use to describe much of their behavior. By unmasking the history behind the search for a real world solution to Einstein’s field equations, Melia offers a first-hand account of an important but untold story. Sometimes dramatic, often exhilarating, but always attuned to the human element, Cracking the Einstein Code is ultimately a showcase of how important science gets done.




The Code Book: The Secrets Behind Codebreaking


Book Description

"As gripping as a good thriller." --The Washington Post Unpack the science of secrecy and discover the methods behind cryptography--the encoding and decoding of information--in this clear and easy-to-understand young adult adaptation of the national bestseller that's perfect for this age of WikiLeaks, the Sony hack, and other events that reveal the extent to which our technology is never quite as secure as we want to believe. Coders and codebreakers alike will be fascinated by history's most mesmerizing stories of intrigue and cunning--from Julius Caesar and his Caeser cipher to the Allies' use of the Enigma machine to decode German messages during World War II. Accessible, compelling, and timely, The Code Book is sure to make readers see the past--and the future--in a whole new way. "Singh's power of explaining complex ideas is as dazzling as ever." --The Guardian




Our Mathematical Universe


Book Description

Max Tegmark leads us on an astonishing journey through past, present and future, and through the physics, astronomy and mathematics that are the foundation of his work, most particularly his hypothesis that our physical reality is a mathematical structure and his theory of the ultimate multiverse. In a dazzling combination of both popular and groundbreaking science, he not only helps us grasp his often mind-boggling theories, but he also shares with us some of the often surprising triumphs and disappointments that have shaped his life as a scientist. Fascinating from first to last—this is a book that has already prompted the attention and admiration of some of the most prominent scientists and mathematicians.




Actuality


Book Description

This collection of essays delivers realistic and logical answers to our probing questions of life with refreshing scientific grounding. Actuality uncovers the essential elements for understanding our true nature and reason for existence. Common occurrences, everyday observations and scientific data give the reader clear and logical answers. Once establishing these clear answers, Actuality goes deeper, offering the reader a clear pathway towards transcendental realization.




Quantum Physics


Book Description

Presents a guide to quantum physics including the history of quantum theory, its basic principles, and future applications.




Rod's Room: a New Earth and a New Universe


Book Description

This book is made up of short articles, poems and stories that speculate on the future and seek to combine science with medicine and ideas which have always been regarded as belonging to religion or science fiction. The four short articles at the start (Gates>STARGATE, How to Create Universes, Building Doctor Who's TARDIS and Darwin's Evolution Unifies Universe) give the reader a condensed view of the conclusions my reading and thinking led me to. They seem to help explain points in each other. After these four are written the steps taken since 1999 to arrive at my conclusions.




The Economist


Book Description




Einstein Wrote Back


Book Description

John W. Moffat was a poor student of math and science. That is, until he read Einstein’s famous paper on general relativity. Realizing instantly that he had an unusual and unexplained aptitude for understanding the complex physics described in the paper, Moffat wrote a letter to Einstein that would change the course of his life. Einstein Wrote Back tells the story of Moffat’s unusual entry into the world of academia and documents his career at the frontlines of twentieth-century physics as he worked and associated with some of the greatest minds in scientific history, including Niels Bohr, Fred Hoyle, Wolfgang Pauli, Paul Dirac, Erwin Schrödinger, J. Robert Oppenheimer, Abdus Salam, among others. Taking readers inside the classrooms and minds of these giants of modern science, Moffat affectionately exposes the foibles and eccentricities of these great men, as they worked on the revolutionary ideas that, today, are the very foundation of modern physics and cosmology.