A History of Mathematics


Book Description

The updated new edition of the classic and comprehensive guide to the history of mathematics For more than forty years, A History of Mathematics has been the reference of choice for those looking to learn about the fascinating history of humankind’s relationship with numbers, shapes, and patterns. This revised edition features up-to-date coverage of topics such as Fermat’s Last Theorem and the Poincaré Conjecture, in addition to recent advances in areas such as finite group theory and computer-aided proofs. Distills thousands of years of mathematics into a single, approachable volume Covers mathematical discoveries, concepts, and thinkers, from Ancient Egypt to the present Includes up-to-date references and an extensive chronological table of mathematical and general historical developments. Whether you're interested in the age of Plato and Aristotle or Poincaré and Hilbert, whether you want to know more about the Pythagorean theorem or the golden mean, A History of Mathematics is an essential reference that will help you explore the incredible history of mathematics and the men and women who created it.




History Algebraic Geometry


Book Description

This book contains several fundamental ideas that are revived time after time in different guises, providing a better understanding of algebraic geometric phenomena. It shows how the field is enriched with loans from analysis and topology and from commutative algebra and homological algebra.




Mathematical Fallacies, Flaws, and Flimflam


Book Description

A collection of mathematical errors, drawn from the work of students, textbooks, and the media, as well as from professional mathematicians themselves.




Conics and Cubics


Book Description

Conics and Cubics offers an accessible and well illustrated introduction to algebraic curves. By classifying irreducible cubics over the real numbers and proving that their points form Abelian groups, the book gives readers easy access to the study of elliptic curves. It includes a simple proof of Bezout’s Theorem on the number of intersections of two curves. The subject area is described by means of concrete and accessible examples. The book is a text for a one-semester course.




Abstracts of Masters' Theses


Book Description







An Algebraic Approach to Geometry


Book Description

This is a unified treatment of the various algebraic approaches to geometric spaces. The study of algebraic curves in the complex projective plane is the natural link between linear geometry at an undergraduate level and algebraic geometry at a graduate level, and it is also an important topic in geometric applications, such as cryptography. 380 years ago, the work of Fermat and Descartes led us to study geometric problems using coordinates and equations. Today, this is the most popular way of handling geometrical problems. Linear algebra provides an efficient tool for studying all the first degree (lines, planes) and second degree (ellipses, hyperboloids) geometric figures, in the affine, the Euclidean, the Hermitian and the projective contexts. But recent applications of mathematics, like cryptography, need these notions not only in real or complex cases, but also in more general settings, like in spaces constructed on finite fields. And of course, why not also turn our attention to geometric figures of higher degrees? Besides all the linear aspects of geometry in their most general setting, this book also describes useful algebraic tools for studying curves of arbitrary degree and investigates results as advanced as the Bezout theorem, the Cramer paradox, topological group of a cubic, rational curves etc. Hence the book is of interest for all those who have to teach or study linear geometry: affine, Euclidean, Hermitian, projective; it is also of great interest to those who do not want to restrict themselves to the undergraduate level of geometric figures of degree one or two.




New Trends in Geometry


Book Description

This volume focuses on the interactions between mathematics, physics, biology and neuroscience by exploring new geometrical and topological modelling in these fields. Among the highlights are the central roles played by multilevel and scale-change approaches in these disciplines. The integration of mathematics with physics, as well as molecular and cell biology and the neurosciences, will constitute the new frontier of 21st century science, where breakthroughs are more likely to span across traditional disciplines.




CRC Concise Encyclopedia of Mathematics


Book Description

Upon publication, the first edition of the CRC Concise Encyclopedia of Mathematics received overwhelming accolades for its unparalleled scope, readability, and utility. It soon took its place among the top selling books in the history of Chapman & Hall/CRC, and its popularity continues unabated. Yet also unabated has been the d




Residues and Duality for Projective Algebraic Varieties


Book Description

"This book, which grew out of lectures by E. Kunz for students with a background in algebra and algebraic geometry, develops local and global duality theory in the special case of (possibly singular) algebraic varieties over algebraically closed base fields. It describes duality and residue theorems in terms of Kahler differential forms and their residues. The properties of residues are introduced via local cohomology. Special emphasis is given to the relation between residues to classical results of algebraic geometry and their generalizations." "The contribution by A. Dickenstein gives applications of residues and duality to polynomial solutions of constant coefficient partial differential equations and to problems in interpolation and ideal membership, D. A. Cox explains toric residues and relates them to the earlier text." "The book is intended as an introduction to more advanced treatments and further applications of the subject, to which numerous bibliographical hints are given."--BOOK JACKET.