Critical Aspects of EPA's IRIS Assessment of Inorganic Arsenic


Book Description

The US Environmental Protection Agency (EPA) Integrated Risk Information System (IRIS) program develops toxicologic assessments of environmental contaminants. IRIS assessments provide hazard identification and dose-response assessment information. The information is then used in conjunction with exposure information to characterize risks to public health and may be used in risk-based decisionmaking, in regulatory actions, and for other risk-management purposes. Since the middle 1990s, EPA has been in the process of updating the IRIS assessment of inorganic arsenic. In response to a congressional mandate for an independent review of the IRIS assessment of inorganic arsenic, EPA requested that the National Research Council convene a committee to conduct a two-phase study. Critical Aspects of EPA's IRIS Assessment of Inorganic Arsenic is the report of the first phase of that study. This report evaluates critical scientific issues in assessing cancer and noncancer effects of oral exposure to inorganic arsenic and offers recommendations on how the issues could be addressed in EPA's IRIS assessment.




Critical Aspects of EPA's IRIS Assessment of Inorganic Arsenic


Book Description

The US Environmental Protection Agency (EPA) Integrated Risk Information System (IRIS) program develops toxicologic assessments of environmental contaminants. IRIS assessments provide hazard identification and dose-response assessment information. The information is then used in conjunction with exposure information to characterize risks to public health and may be used in risk-based decisionmaking, in regulatory actions, and for other risk-management purposes. Since the middle 1990s, EPA has been in the process of updating the IRIS assessment of inorganic arsenic. In response to a congressional mandate for an independent review of the IRIS assessment of inorganic arsenic, EPA requested that the National Research Council convene a committee to conduct a two-phase study. Critical Aspects of EPA's IRIS Assessment of Inorganic Arsenic is the report of the first phase of that study. This report evaluates critical scientific issues in assessing cancer and noncancer effects of oral exposure to inorganic arsenic and offers recommendations on how the issues could be addressed in EPA's IRIS assessment.




Sittig's Handbook of Toxic and Hazardous Chemicals and Carcinogens


Book Description

For more than a quarter century, Sittig's Handbook of Toxic and Hazardous Chemicals and Carcinogens has proven to be among the most reliable, easy-to-use and essential reference works on hazardous materials. Sittig's 5th Edition remains the lone comprehensive work providing a vast array of critical information on the 2,100 most heavily used, transported, and regulated chemical substances of both occupational and environmental concern.Information is the most vital resource anyone can have when dealing with potential hazardous substance accidents or acts of terror. Sittig's provides extensive data for each of the 2,100 chemicals in a uniform format, enabling fast and accurate decisions in any situation. The chemicals are presented alphabetically and classified as a carcinogen, hazardous substance, hazardous waste, or toxic pollutant. This new edition contains extensively expanded information in all 28 fields for each chemical (see table of contents) and has been updated to keep pace with world events. Chemicals classified as WMD have been included in the new edition as has more information frequently queried by first responders and frontline industrial safety personnel.*Includes and references European chemical identifiers and regulations.*The only single source reference that provides such in-depth information for each chemical.*The two volume set is designed for fast and accurate decision making in any situation.




Review of EPA's Updated Problem Formulation and Protocol for the Inorganic Arsenic IRIS Assessment


Book Description

The Integrated Risk Information System (IRIS) is a program within the US Environmental Protection Agency (EPA) that is responsible for developing toxicologic assessments of environmental contaminants. An IRIS assessment contains hazard identifications and dose-response assessments of various chemicals related to cancer and noncancer outcomes. Although the program was created to increase consistency among toxicologic assessments within the agency, federal, state, and international agencies and other organizations have come to rely on IRIS assessments for setting regulatory standards, establishing exposure guidelines, and estimating risks to exposed populations. The EPA has been working on its IRIS assessment of inorganic arsenic (iAs) for many years, and recently released its plans for completing it in the Updated Problem Formulation and Protocol for the Inorganic Arsenic IRIS Assessment. Much of the update was made in response to recommendations in a 2013 report made by the National Academies of Sciences, Engineering, and Medicine. The National Academies recently convened another evaluation of whether the various elements of the IRIS iAs assessment plan are appropriate to synthesize the scientific evidence and quantitate estimates of iAs toxicity. Review of EPA's IRIS Assessment Plan for Inorganic Arsenic explores the EPA's approach to prioritizing health outcomes, EPA's systematic review methods, EPA's consideration of potential health effects from early life exposures, mode-of-action information to inform dose-response analyses, and various approaches to investigate dose-response relationships.










Arsenic Toxicity: Challenges and Solutions


Book Description

Arsenic (As) is a widely distributed element in the environment having no known useful physiological function in plants or animals. Historically, this metalloid has been known to be used widely as a poison. Effects of arsenic have come to light in the past few decades due to its increasing contamination in several parts of world, with the worst situation being in Bangladesh and West Bengal in India. This edited volume brings together diverse group of environmental science, sustainability and health researchers to address the challenges posed by global mass poisoning caused by arsenic water contamination. The book covers sources of arsenic contamination, and its impact on human health and on prospective remediation both by bioremediation and phytoremediation. Applications of advance techniques such as genetic engineering and nanotechnology are also discussed to resolve the issue of arsenic contamination in ground water and river basins. The book sheds light on this global environmental issue, and proposes solutions to remove contamination through a multi-disciplinary lens and case studies from Bangladesh and India. The book may serve as a reference to environment and sustainability researchers, students and policy makers. It delivers an outline to graduate, undergraduate students and researchers, as well as academicians who are working on arsenic toxicity with respect to remediation and health issues.




Environmental Risk Assessment


Book Description

The purpose of risk assessment is to support science-based decisions about how to solve complex societal problems. Indeed, the problems humankind faces in the 21st century have many social, political, and technical complexities. Environmental risk assessment in particular is of increasing importance as health and safety regulations grow and become more complicated. Environmental Risk Assessment: A Toxicological Approach, 2nd Edition looks at various factors relating to exposure and toxicity, human health, and risk. In addition to the original chapters being updated and expanded upon, four new chapters discuss current software and platforms that have recently been developed and provide examples of risk characterizations and scenarios. Features: Introduces the science of risk assessment—past, present, and future Provides environmental sampling data for conducting practice risk assessments Considers how bias and conflict of interest affect science-based decisions in the 21st century Includes fully worked examples, case studies, discussion questions, and suggestions for additional reading Discusses new software and computational platforms that have developed since the first edition Aimed at the next generation of risk assessors and students who need to know more about developing, conducting, and interpreting risk assessments, the book delivers a comprehensive view of the field, complete with sufficient background to enable readers to probe for themselves the science underlying the key issues in environmental risk.




Arsenic Research and Global Sustainability


Book Description

The Congress "Arsenic in the Environment" offers an international, multi- and interdisciplinary discussion platform for research and innovation aimed towards a holistic solution to the problem posed by the environmental toxin arsenic, with considerable societal impact. The congress has focused on cutting edge and breakthrough research in physical, chemical, toxicological, medical, agricultural and other specific issues on arsenic across a broader environmental realm. The Congress "Arsenic in the Environment" was first organized in Mexico City (As2006) followed by As2008 in Valencia, Spain, As2010 in Tainan, Taiwan, As2012 in Cairns, Australia and As2014 in Buenos Aires, Argentina. The 6th International Congress As2016 was held June 19-23, 2016 in Stockholm, Sweden and was entitled Arsenic Research and Global Sustainability. The Congress addressed the broader context of arsenic research along the following themes: Theme 1: Arsenic in Environmental Matrices and Interactions (Air, Water, Soil and Biological Matrices) Theme 2: Arsenic in Food Chain Theme 3: Arsenic and Health Theme 4: Clean Water Technology for Control of Arsenic Theme 5: Societal issues, Policy Studies, Mitigation and Management Long term exposure to low-to-medium levels of arsenic via contaminated food and drinking water can have a serious impact on human health and globally, more than 100 million people are at risk. Since the end of the 20th century, arsenic in drinking water (mainly groundwater) has emerged as a global health concern. In the past decade, the presence of arsenic in plant foods – especially rice – has gained increasing attention. In the Nordic countries in particular, the use of water-soluble inorganic arsenic chemicals (e.g. chromated copper arsenate, CCA) as wood preservatives and the mining of sulfidic ores have been flagged as health concern. The issue has been accentuated by discoveries of naturally occurring arsenic in groundwater, primarily in the private wells, in parts of the Fennoscandian Shield and in sedimentary formations, with potentially detrimental effects on public health. Sweden has been at the forefront of research on the health effects of arsenic, technological solutions for arsenic removal, and sustainable mitigation measures for developing countries. Hosting this Congress in Sweden was also relevant because historically Sweden has been one of the leading producer of As2O3 and its emission from the smelting industries in northern Sweden and has successfully implemented actions to reduce the industrial emissions of arsenic as well as minimizing the use of materials and products containing arsenic in since 1977. The Congress has gathered professionals involved in different segments of interdisciplinary research in an open forum, and strengthened relations between academia, industry, research laboratories, government agencies and the private sector to share an optimal atmosphere for exchange of knowledge, discoveries and discussions about the problem of arsenic in the environment and catalyze the knowledge generation and innovations at a policy context to achieve the goals for post 2015 Sustainable Development.




Toxicological Profile for DDT/DDD/DDE (Update)


Book Description

DDT is a pesticide that was once widely used to control insects. Both DDD and DDE are breakdown products of DDT. This profile includes: (1) The examination, summary, and interpretation of available toxicologic info. and epidemiologic evaluations on DDT/DDD/DDE to ascertain the levels of significant human exposure for the substance and the associated chronic health effects; (2) A determination of whether adequate info. on the health effects of DDT/DDD/DDE is available to determine levels of exposure that present a significant risk to human health of chronic health effects; and (3) Identification of toxicologic testing needed to identify the types or levels of exposure that may present significant risk of adverse health effects in humans. Illus.