Critical Current Limitation In High Temperature Superconductors


Book Description

This volume will focus on the theory and experiments leading to quantitative understanding of the magnetic field and temperature dependence of critical current densities in high-temperature superconductors. Topics will include: critical currents and flux-pinning, flux flow and flux creep, anisotropy of critical fields and currents, properties of the flux lattice and the irreversibility line, magnetization, granularity.




High Temperature Superconductivity 2


Book Description

In contrast to research on the fundamental mechanisms of High-Temperature Superconductivity, in recent years we have seen enormous developments in the fabrication and application of High-Tc-superconductors. The two volumes of High Temperature Superconductivity provide a survey of the state of the technology and engineering applications of these materials. They comprise extended original research papers and technical review articles written by physicists, chemists, materials scientists and engineers, all of them noted experts in their fields. The interdisciplinary and strictly application-oriented coverage should benefit graduate students and academic researchers in the mentioned areas as well as industrial experts. Volume 1 "Materials" focuses on major technical advancements in High-Tc materials processing for applications. Volume 2 "Engineering Applications" covers numerous application areas where High-Tc superconductors are making tremendous impact.




Physical Properties Of High Temperature Superconductors Ii


Book Description

Since the publication of Physical Properties of High Temperature Superconductors I, research in the field of high temperature superconductivity has continued at a rapid pace. Volume II will contain chapters on some of the major areas of activity which were not covered extensively in Volume I: structure, microstructure, thermodynamics, oxygen stoichiometry effects, nuclear magnetic and quadrupole resonance, Hall effect, electronic structure, and the pairing state. Like Volume I, it will present authoritative and comprehensive reviews written by recognized experts in the field. This book should be useful to all students, scientists, and engineers who desire to know more about high temperature superconductivity.




High-Temperature Superconductors: Materials, Properties, and Applications


Book Description

The discovery by J. G. Bednorz and K. A. Mtllier in 1986 that the superconducting state can exist in oxides at temperatures above 30 K stimulated research in the field of superconductivity and opened up a new field of research. Within a few years a large number of cuprate superconductors with transition temperatures well above the boiling point of liquid nitrogen have been found. The possibility of using liquid nitrogen as coolant re-stimulated interest in power applications of supercon ductivity. In this book an overview of the known high-Te superconductors and their physical properties is presented. Aspects related to conductor fabrication and high-current applications are emphasised. The material should be suitable for use in graduate level courses on superconductivity. Researchers in the field may profit from the large number of tables and references describing its status at the end of 1997. An introduction to high-To superconductivity must be based on the fundamental physical principles of normal-state electrical conductivity and the well-known characteristics of conventional superconductors. In Chapter 2 this background is provided. Crystal structures, anisotropic properties and general trends of the critical temperatures of the cuprate superconductors are described in Chapters 3 and 4. The processing of superconductor powders addressed in Chapter 5 affects considerably the current-carrying capacity of high-T. wires. In Chapter 6 several fabrication techniques for superconducting wires are described. In addition, the factors limiting the transport critical currents ofhigh-Te wires are discussed.




Physical Properties of High-Temperature Superconductors


Book Description

A much-needed update on complex high-temperature superconductors, focusing on materials aspects; this timely book coincides with a recent major break-through of the discovery of iron-based superconductors. It provides an overview of materials aspects of high-temperature superconductors, combining introductory aspects, description of new physics, material aspects, and a description of the material properties This title is suitable for researchers in materials science, physics and engineering. Also for technicians interested in the applications of superconductors, e.g. as biomagnets




High Temperature Superconductors (HTS) for Energy Applications


Book Description

High temperature superconductors (HTS) offer many advantages through their application in electrical systems, including high efficiency performance and high throughput with low-electrical losses. While cryogenic cooling and precision materials manufacture is required to achieve this goal, cost reductions without significant performance loss are being achieved through the advanced design and development of HTS wires, cables and magnets, along with improvements in manufacturing methods. This book explores the fundamental principles, design and development of HTS materials and their practical applications in energy systems.Part one describes the fundamental science, engineering and development of particular HTS components such as wires and tapes, cables, coils and magnets and discusses the cryogenics and electromagnetic modelling of HTS systems and materials. Part two reviews the types of energy applications that HTS materials are used in, including fault current limiters, power cables and energy storage, as well as their application in rotating machinery for improved electrical efficiencies, and in fusion technologies and accelerator systems where HTS magnets are becoming essential enabling technologies.With its distinguished editor and international team of expert contributors, High temperature superconductors (HTS) for energy applications is an invaluable reference tool for anyone involved or interested in HTS materials and their application in energy systems, including materials scientists and electrical engineers, energy consultants, HTS materials manufacturers and designers, and researchers and academics in this field. - Discusses fundamental issues and developments of particular HTS components - Comprehensively reviews the design and development of HTS materials and then applications in energy systems - Reviews the use of HTS materials and cabling transmissions, fault alignment limiters, energy storage, generators and motors, fusion and accelerator




High Temperature Superconductivity 2


Book Description

In contrast to research on the fundamental mechanisms of High-Temperature Superconductivity, in recent years we have seen enormous developments in the fabrication and application of High-Tc-superconductors. The two volumes of High Temperature Superconductivity provide a survey of the state of the technology and engineering applications of these materials. They comprise extended original research papers and technical review articles written by physicists, chemists, materials scientists and engineers, all of them noted experts in their fields. The interdisciplinary and strictly application-oriented coverage should benefit graduate students and academic researchers in the mentioned areas as well as industrial experts. Volume 1 "Materials" focuses on major technical advancements in High-Tc materials processing for applications. Volume 2 "Engineering Applications" covers numerous application areas where High-Tc superconductors are making tremendous impact.




Field Penetration and Magnetization of High Temperature Superconductors


Book Description

Visualisation of Shubnikov Phase Using the High Resolution Faraday Effect; Mechanism of microwave Absorption and Flux Distribution in High Temperature Superconductors; Field Penetration and Magnetisation of Hts; Experimental Aspects of Megnetisation Studies in Superconductors; Recent Development of the Critical State Model; Anomalous Magnetisation in Ybacuo Single Crystals; Surface Barrier and Fish Tail; Low Field Magnetic Behaviour of High Temperature Superconductors; Irreversible Part of Magnetisation Due to Flux Pinning; Irreversibility Line in High Temperature Superconductors; Non-Linear Flux Flow Regime High-Temperature Superconductors.




High-Tc Superconductors for Magnet and Energy Technology


Book Description

Since the discovery of high temperature superconductors the scientific com nmnity has been very active in research on material and system development as well as on the basic understanding of the mechanism of superconductiv ity at high transition temperatures. Industrial groups joined in very soon as with these new materials the prospects for commercial application of super conductivity seemed to be more promising than ever. Materials processing was divided into film deposition and bulk preparation techniques, the latter including conductor fabrication and melt growth of monolithic samples as well. Because of the high impact of possible applications in energy technol ogy, wire and tape fabrication of the BSCCO superconductors is one of the most important fields, in addition to thin film technology for mobile comuni cation. Only since processes like IBAD and RABiTS TM were invented have film deposition techniques also become important for energy technology. In order to produce suitable conductors with material properties which meet the challenge imposed by energy technology, detailed understanding of the phase formation and physical properties of the high temperature super conductors is necessary. The goal of this book is on one hand to provide the basic information on phase formation and physical properties, and to give a short overview of the state of the art in conductor preparation and character ization. On the other hand it contains the author's own results in the field of preparation and characterization.




Applications of High Temperature Superconductors to Electric Power Equipment


Book Description

The only one-stop reference to design, analysis, and manufacturing concepts for power devices utilizing HTS. High temperature superconductors (HTS) have been used for building many devices for electric grids worldwide and for large ship propulsion motors for the U.S. Navy. And yet, there has been no single source discussing theory and design issues relating to power applications of HTS—until now. This book provides design and analysis for various devices and includes examples of devices built over the last decade. Starting with a complete overview of HTS, the subsequent chapters are dedicated to specific devices: cooling and thermal insulation systems; rotating AC and DC machines; transformers; fault current limiters; power cables; and Maglev transport. As applicable, each chapter provides a history of the device, principles, configuration, design and design challenges, prototypes, and manufacturing issues, with each ending with a summary of the material covered. The design analysis and design examples provide critical insight for readers to successfully design their own devices. Original equipment manufacturer (OEM) designers, industry and utilities users, universities and defense services research groups, and senior/postgraduate engineering students and instructors will rely on this resource. "HTS technology reduces electric losses and increases the efficiency of power equipment. This book by Swarn Kalsi, a leading expert on the HTS subject, provides a survey of the HTS technology and the design rules, performance analyses, and manufacturing concepts for power application-related devices. It compares conventional and HTS technology approaches for device design and provides significant examples of devices utilizing the HTS technology today. The book is useful for a broad spectrum of professionals worldwide: students, teaching staff, and OEM designers as well as users in industry and electric utilities." —Professor Dr. Rolf Hellinger, Research and Technologies Corporate Technology, Siemens AG