Elements of Slow-Neutron Scattering


Book Description

This book provides a comprehensive and up-to-date introduction to the fundamental theory and applications of slow-neutron scattering.




Neutron Scattering from Magnetic Materials


Book Description

Neutron Scattering from Magnetic Materials is a comprehensive account of the present state of the art in the use of the neutron scattering for the study of magnetic materials. The chapters have been written by well-known researchers who are at the forefront of this field and have contributed directly to the development of the techniques described. Neutron scattering probes magnetic phenomena directly. The generalized magnetic susceptibility, which can be expressed as a function of wave vector and energy, contains all the information there is to know about the statics and dynamics of a magnetic system and this quantity is directly related to the neutron scattering cross section. Polarized neutron scattering techniques raise the sophistication of measurements to even greater levels and gives additional information in many cases. The present book is largely devoted to the application of polarized neutron scattering to the study of magnetic materials. It will be of particular interest to graduate students and researchers who plan to investigate magnetic materials using neutron scattering.· Written by a group of scientist who have contributed directly in developing the techniques described.· A complete treatment of the polarized neutron scattering not available in literature.· Gives practical hits to solve magnetic structure and determine exchange interactions in magnetic solids.· Application of neutron scattering to the study of the novel electronic materials.




Neutron Scattering in Novel Materials


Book Description

This book provides an introduction to the basic principles of neutron scattering and its application to current problems in condensed matter science and technology. Experiments on novel materials are particularly emphasized.




Spin Fluctuations in Itinerant Electron Magnetism


Book Description

Ferromagnetism of metallic systems, especially those including transition metals, has been a controversial subject of modern science for a long time. This controversy sterns from the apparent dual character of the d-electrons responsible for magnetism in transition metals, i.e., they are itinerant elec trons described by band theory in their ground state, while at finite tem peratures they show various properties that have long been attributed to a system consisting of local magnetic moments. The most familiar example of these properties is the Curie-Weiss law of magnetic susceptibility obeyed by almost all ferromagnets above their Curie temperatures. At first the problem seemed to be centered around whether the d-elec trons themselves are localized or itinerant. This question was settled in the 1950s and early 1960s by various experimental investigations, in particular by observations of d-electron Fermi surfaces in ferromagnetic transition metals. These observations are generally consistent with the results of band calculations. Theoretical investigations since then have concentrated on explaining this dual character of d-electron systems, taking account of the effects of electron-electron correlations in the itinerant electron model. The problem in physical terms is to study the spin density fluctuati·ons, which are ne glected in the mean-field or one-electron theory, and their influence on the physical properties.




Neutron Scattering In Novel Materials, 8th Summer Sch


Book Description

This book provides an introduction to the basic principles of neutron scattering and its application to current problems in condensed matter science and technology. Experiments on novel materials are particularly emphasized.







Introduction to Frustrated Magnetism


Book Description

The field of highly frustrated magnetism has developed considerably and expanded over the last 15 years. Issuing from canonical geometric frustration of interactions, it now extends over other aspects with many degrees of freedom such as magneto-elastic couplings, orbital degrees of freedom, dilution effects, and electron doping. Its is thus shown here that the concept of frustration impacts on many other fields in physics than magnetism. This book represents a state-of-the-art review aimed at a broad audience with tutorial chapters and more topical ones, encompassing solid-state chemistry, experimental and theoretical physics.




Magnetic Small-Angle Neutron Scattering


Book Description

Magnetic Small-Angle Neutron Scattering provides the first extensive treatment of magnetic small-angle neutron scattering (SANS). The theoretical background required to compute magnetic SANS cross sections and correlation functions related to long-wavelength magnetization structures is laidout. The concepts are scrutinized based on the discussion of experimental neutron data. Regarding prior background knowledge, some familiarity with the basic magnetic interactions and phenomena as well as scattering theory is desired.Besides exposing the different origins of magnetic SANS, and furnishing the basics of the magnetic SANS technique in early chapters, a large part of the book is devoted to a comprehensive treatment of the continuum theory of micromagnetics, as it is relevant for the study of the elastic magneticSANS cross section. Analytical expressions for the magnetization Fourier components allow to highlight the essential features of magnetic SANS and to analyze experimental data both in reciprocal, as well as in real space. Later chapters provide an overview on the magnetic SANS of nanoparticles andso-called complex systems (e.g., ferrofluids, magnetic steels, spin glasses and amorphous magnets). It is this subfield where major progress is expected to be made in the coming years, mainly via the increased usage of numerical micromagnetic simulations (Chapter 7), which is a very promisingapproach for the understanding of the magnetic SANS from systems exhibiting nanoscale spin inhomogeneity.




Neutron Scattering - Magnetic and Quantum Phenomena


Book Description

Neutron Scattering - Magnetic and Quantum Phenomena provides detailed coverage of the application of neutron scattering in condensed matter research. The book's primary aim is to enable researchers in a particular area to identify the aspects of their work where neutron scattering techniques might contribute, conceive the important experiments to be done, assess what is required to carry them out, write a successful proposal for one of the major user facilities, and perform the experiments under the guidance of the appropriate instrument scientist. An earlier series edited by Kurt Sköld and David L. Price, and published in the 1980s by Academic Press as three volumes in the series Methods of Experimental Physics, was very successful and remained the standard reference in the field for several years. This present work has similar goals, taking into account the advances in experimental techniques over the past quarter-century, for example, neutron reflectivity and spin-echo spectroscopy, and techniques for probing the dynamics of complex materials of technological relevance. This volume complements Price and Fernandez-Alonso (Eds.), Neutron Scattering - Fundamentals published in November 2013. - Covers the application of neutron scattering techniques in the study of quantum and magnetic phenomena, including superconductivity, multiferroics, and nanomagnetism - Presents up-to-date reviews of recent results, aimed at enabling the reader to identify new opportunities and plan neutron scattering experiments in their own field - Provides a good balance between theory and experimental techniques - Provides a complement to Price and Fernandez-Alonso (Eds.), Neutron Scattering - Fundamentals published in November 2013




Function and Regulation of Cellular Systems


Book Description

Current biological research demands the extensive use of sophisticated mathematical methods and computer-aided analysis of experiments and data. This highly interdisciplinary volume focuses on structural, dynamical and functional aspects of cellular systems and presents corresponding experiments and mathematical models. The book may serve as an introduction for biologists, mathematicians and physicists to key questions in cellular systems which can be studied with mathematical models. Recent model approaches are presented with applications in cellular metabolism, intra- and intercellular signaling, cellular mechanics, network dynamics and pattern formation. In addition, applied issues such as tumor cell growth, dynamics of the immune system and biotechnology are included.