Crop Breeding for Drought Resistance


Book Description

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.




Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops


Book Description

With near-comprehensive coverage of new advances in crop breeding for drought and salinity stress tolerance, this timely work seeks to integrate the most recent findings about key biological determinants of plant stress tolerance with modern crop improvement strategies. This volume is unique because is provides exceptionally wide coverage of current knowledge and expertise being applied in drought and salt tolerance research.







Plants Under Stress


Book Description

The volume identifies how stressful conditions affect plants. Various stresses can have a major impact on plant growth and survival. This book examines some of the more important stresses, shows how they affect the plant and then reviews how new varieties or new species can be selected which are less vulnerable to stress.




Plant Breeding for Water-Limited Environments


Book Description

This volume will be the only existing single-authored book offering a science-based breeder’s manual directed at breeding for water-limited environments. Plant breeding is characterized by the need to integrate information from diverse disciplines towards the development and delivery of a product defines as a new cultivar. Conventional breeding draws information from disciplines such as genetics, plant physiology, plant pathology, entomology, food technology and statistics. Plant breeding for water-limited environments and the development of drought resistant crop cultivars is considered as one of the more difficult areas in plant breeding while at the same time it is becoming a very pressing issue. This volume is unique and timely in that it develops realistic solutions and protocols towards the breeding of drought resistant cultivars by integrating knowledge from environmental science, plant physiology, genetics and molecular biology.




Plant Breeding For Stress Environments


Book Description

This publication opens with the inevitable introduction, moves on to the present traditional approach to breeding for yield stability, and then enumerates a detailed discussion of the physiological approach to breeding for resistance to specific stresses. Not all environmental stresses are covered, omitting those for which little can be said today on practical breeding solutions.




Drought Stress Tolerance in Plants, Vol 2


Book Description

Drought is one of the most severe constraints to crop productivity worldwide, and thus it has become a major concern for global food security. Due to an increasing world population, droughts could lead to serious food shortages by 2050. The situation may worsen due to predicated climatic changes that may increase the frequency, duration and severity of droughts. Hence, there is an urgent need to improve our understanding of the complex mechanisms associated with drought tolerance and to develop modern crop varieties that are more resilient to drought. Identification of the genes responsible for drought tolerance in plants will contribute to our understanding of the molecular mechanisms that could enable crop plants to respond to drought. The discovery of novel drought related genes, the analysis of their expression patterns in response to drought, and determination of the functions these genes play in drought adaptation will provide a base to develop effective strategies to enhance the drought tolerance of crop plants. Plant breeding efforts to increase crop yields in dry environments have been slow to date mainly due to our poor understanding of the molecular and genetic mechanisms involved in how plants respond to drought. In addition, when it comes to combining favourable alleles, there are practical obstacles to developing superior high yielding genotypes fit for drought prone environments. Drought Tolerance in Plants, Vol 2: Molecular and Genetic Perspectives combines novel topical findings, regarding the major molecular and genetic events associated with drought tolerance, with contemporary crop improvement approaches. This volume is unique as it makes available for its readers not only extensive reports of existing facts and data, but also practical knowledge and overviews of state-of-the-art technologies, across the biological fields, from plant breeding using classical and molecular genetic information, to the modern omic technologies, that are now being used in drought tolerance research to breed drought-related traits into modern crop varieties. This book is useful for teachers and researchers in the fields of plant breeding, molecular biology and biotechnology.




Plant Breeding


Book Description

Plant Breeding - Current and Future Views provides scientific views from leading international scientists on the latest advances in plant breeding, in particular new crop development, breeding for stressful conditions, new tools in plant molecular breeding, and crop biotechnology. The chapters present new updates in the field of plant breeding, covering the scientific efforts and solutions of the world's plant science research community in the era of technological advance and global climate change.




Plant Biodiversity and Genetic Resources


Book Description

The papers included in this Special Issue address a variety of important aspects of plant biodiversity and genetic resources, including definitions, descriptions, and illustrations of different components and their value for food and nutrition security, breeding, and environmental services. Furthermore, comprehensive information is provided regarding conservation approaches and techniques for plant genetic resources, policy aspects, and results of biological, genetic, morphological, economic, social, and breeding-related research activities. The complexity and vulnerability of (plant) biodiversity and its inherent genetic resources, as an integral part of the contextual ecosystem and the human web of life, are clearly demonstrated in this Special Issue, and for several encountered problems and constraints, possible approaches or solutions are presented to overcome these.




Drought Stress in Maize (Zea mays L.)


Book Description

This book focuses on early germination, one of maize germplasm most important strategies for adapting to drought-induced stress. Some genotypes have the ability to adapt by either reducing water losses or by increasing water uptake. Drought tolerance is also an adaptive strategy that enables crop plants to maintain their normal physiological processes and deliver higher economical yield despite drought stress. Several processes are involved in conferring drought tolerance in maize: the accumulation of osmolytes or antioxidants, plant growth regulators, stress proteins and water channel proteins, transcription factors and signal transduction pathways. Drought is one of the most detrimental forms of abiotic stress around the world and seriously limits the productivity of agricultural crops. Maize, one of the leading cereal crops in the world, is sensitive to drought stress. Maize harvests are affected by drought stress at different growth stages in different regions. Numerous events in the life of maize crops can be affected by drought stress: germination potential, seedling growth, seedling stand establishment, overall growth and development, pollen and silk development, anthesis silking interval, pollination, and embryo, endosperm and kernel development. Though every maize genotype has the ability to avoid or withstand drought stress, there is a concrete need to improve the level of adaptability to drought stress to address the global issue of food security. The most common biological strategies for improving drought stress resistance include screening available maize germplasm for drought tolerance, conventional breeding strategies, and marker-assisted and genomic-assisted breeding and development of transgenic maize. As a comprehensive understanding of the effects of drought stress, adaptive strategies and potential breeding tools is the prerequisite for any sound breeding plan, this brief addresses these aspects.