Crop Growth Simulation Modelling And Climate Change


Book Description

This book on “Crop Growth Simulation Modelling and Climate Change”. A group of authors have dealt with different aspects of crop modelling viz., Crop growth simulation models in agricultural crop production, Applications of Crop Growth Simulation Models in Climate Change Assessments, Biophysical impacts and priorities for adaptation of agricultural crops in a changing climate, Climate change projections – India’s Perspective, Impact of Rising Atmospheric CO2 concentration on Plant and Soil processes, Modelling the impact of climate change on soil erosion in stabilization and destabilization of soil organic carbon, Simulating Crop Yield, Soil Processes, Greenhouse Gas Emission and Climate Change Impacts with APSIM, InfoCrop Model, CropSyst model and its application in natural resource management, Climate change and crop production system: assessing the consequences for food security, A biophysical model to analyze climate change impacts on rainfed rice productivity in the mid-hills of Northeast India, AquaCrop Modelling: A Water Driven Simulation Model, Conservation Agriculture: A strategy to cope with Climate Change, Effect of climate change on productivity of wheat and possible mitigation strategies using DSSAT model in foot hill of Western Himalayas, Integrating Remote Sensing Data in Crop Process Models, Climate change impact assessment using DSSAT model, Decision Support System for Managing Soil Fertility and Productivity in Agriculture, De-Nitrification De-Composition Model - An Introduction for SOC Simulations, Crop Simulation Modeling for Climate Risk assessment: Adaptation and Mitigation Measures and Rules of Simulations, Rothamsted Carbon (RothC) Model and its Application in Agriculture etc.




Agroclimatology


Book Description

Can we unlock resilience to climate stress by better understanding linkages between the environment and biological systems? Agroclimatology allows us to explore how different processes determine plant response to climate and how climate drives the distribution of crops and their productivity. Editors Jerry L. Hatfield, Mannava V.K. Sivakumar, and John H. Prueger have taken a comprehensive view of agroclimatology to assist and challenge researchers in this important area of study. Major themes include: principles of energy exchange and climatology, understanding climate change and agriculture, linkages of specific biological systems to climatology, the context of pests and diseases, methods of agroclimatology, and the application of agroclimatic principles to problem-solving in agriculture.




ORYZA2000


Book Description




Understanding Options for Agricultural Production


Book Description

The first premise of this book is that farmers need access to options for improving their situation. In agricultural terms, these options might be manage ment alternatives or different crops to grow, that can stabilize or increase household income, that reduce soil degradation and dependence on off-farm inputs, or that exploit local market opportunities. Farmers need a facilitating environment, in which affordable credit is available if needed, in which policies are conducive to judicious management of natural resources, and in which costs and prices of production are stable. Another key ingredient of this facilitating environment is information: an understanding of which options are viable, how these operate at the farm level, and what their impact may be on the things that farmers perceive as being important. The second premise is that systems analysis and simulation have an impor tant role to play in fostering this understanding of options, traditional field experimentation being time-consuming and costly. This book summarizes the activities of the International Benchmark Sites Network for Agrotechnology Transfer (IBSNAT) project, an international initiative funded by the United States Agency for International Development (USAID). IBSNAT was an attempt to demonstrate the effectiveness of understanding options through systems analysis and simulation for the ultimate benefit of farm households in the tropics and subtropics. The idea for the book was first suggested at one of the last IBSNAT group meetings held at the University of Hawaii in 1993.




Climate Change and Crop Production


Book Description

Agricultural, botanical, and social scientists from the four quarters of the world address the impact of climate change on crop productivity, some approaches to adapt plants to both biotic and abiotic stresses, and measures to reduce greenhouse gases. They cover predictions of climate change within the context of agriculture, adapting to biotic and abiotic stresses through crop breeding, sustainable and resource-conserving technologies for adapting to and mitigating climate change, and new tools for enhancing crop adaptation to climate change. Specific topics include economic impacts of climate change on agriculture to 2030, breeding for adaptation to heat and drought stress, managing resident soil microbial community structure and function to suppress the development of soil-borne diseases, and applying geographical information systems (GIS) and crop simulation modeling in climate change research.




Modeling and Control of Greenhouse Crop Growth


Book Description

A discussion of challenges related to the modeling and control of greenhouse crop growth, this book presents state-of-the-art answers to those challenges. The authors model the subsystems involved in successful greenhouse control using different techniques and show how the models obtained can be exploited for simulation or control design; they suggest ideas for the development of physical and/or black-box models for this purpose. Strategies for the control of climate- and irrigation-related variables are brought forward. The uses of PID control and feedforward compensators, both widely used in commercial tools, are summarized. The benefits of advanced control techniques—event-based, robust, and predictive control, for example—are used to improve on the performance of those basic methods. A hierarchical control architecture is developed governed by a high-level multiobjective optimization approach rather than traditional constrained optimization and artificial intelligence techniques. Reference trajectories are found for diurnal and nocturnal temperatures (climate-related setpoints) and electrical conductivity (fertirrigation-related setpoints). The objectives are to maximize profit, fruit quality, and water-use efficiency, these being encouraged by current international rules. Illustrative practical results selected from those obtained in an industrial greenhouse during the last eight years are shown and described. The text of the book is complemented by the use of illustrations, tables and real examples which are helpful in understanding the material. Modeling and Control of Greenhouse Crop Growth will be of interest to industrial engineers, academic researchers and graduates from agricultural, chemical, and process-control backgrounds.




Water Scarcity and Sustainable Agriculture in Semiarid Environment


Book Description

Water Scarcity and Sustainable Agriculture in Semiarid Environment: Tools, Strategies and Challenges for Woody Crops explores the complex relationship between water scarcity and climate change, agricultural water-use efficiency, crop-water stress management and modeling water scarcity in woody crops. Understanding these cause- and effect relationships and identifying the most appropriate responses are critical for sustainable crop production. The book focuses on Mediterranean environments to explain how to determine the most appropriate strategy and implement an effective plan; however, core concepts are translational to other regions. Informative for those working in agricultural water management, irrigation and drainage, crop physiology and sustainable agriculture. - Focuses on semi-arid crops including olive, vine, citrus, almonds, peach, nectarine, plum, subtropical fruits and others - Explores crop physiological responses to drought at plant, cellular and/or molecular levels - Presents tool options for assessing crop-water status and irrigation scheduling




Crop Physiology


Book Description

From climate change to farming systems to genetic modification of organisms, Crop Physiology, Second Edition provides a practical tool for understanding the relationships and challenges of successful cropping. With a focus on genetic improvement and agronomy, this book addresses the challenges of environmentally sound production of bulk and quality food, fodder, fiber, and energy which are of ongoing international concern. The second edition of Crop Physiology continues to provide a unique analysis of these topics while reflecting important changes and advances in the relevant science and implementation systems. Contemporary agriculture confronts the challenge of increasing demand in terms of quantitative and qualitative production targets. These targets have to be achieved against the background of soil and water scarcity, worldwide and regional shifts in the patterns of land use driven by both climate change and the need to develop crop-based sources of energy, and the environmental and social aspects of agricultural sustainability. - Provides a view of crop physiology as an active source of methods, theories, ideas, and tools for application in genetic improvement and agronomy - Written by leading scientists from around the world - Combines environment-specific cropping systems and general principles of crop science to appeal to advanced students, and scientists in agriculture-related disciplines, from molecular sciences to natural resources management




Advances in Crop Modelling for a Sustainable Agriculture


Book Description

Crop modelling has huge potential to improve decision making in farming. This collection reviews advances in next-generation models focused on user needs at the whole farm system and landscape scale.




Climate Change


Book Description

This Food Policy Report presents research results that quantify the climate-change impacts mentioned above, assesses the consequences for food security, and estimates the investments that would offset the negative consequences for human well-being.