Crop Model Review and Sweet Sorghum Crop Model Parameter Development


Book Description

Opportunities for alternative biofuel feedstocks are widespread for a number of reasons: increased environmental and economic concerns over corn production and processing, limitations in the use of corn-based ethanol to 57 billion L (15 billion gal) by the Energy Independence and Security Act (US Congress, 2007), and target requirements of 136 billion L (36 billion gal) of renewable fuel production by 2022. The objective of this study was to select the most promising among currently available crop models that have the potential to model sweet sorghum biomass production in the central US, specifically Kansas, Oklahoma, and Texas, and to develop and test sweet sorghum crop parameters for this model. Five crop models were selected (CropSyst, CERE-Sorghum, APSIM, ALMANAC, and SORKAM), and the models were compared based on ease of use, model support, and availability of inputs and outputs from sweet sorghum biomass data and literature. After reviewing the five models, ALMANAC was selected as the best suited for the development and testing of sweet sorghum crop parameters. The results of the model comparison show that more data are needed about sweet sorghum physiological development stages and specific growth/development factors before the other models reviewed in this study can be readily used for sweet sorghum crop modeling. This study used a unique method to calibrate the sweet sorghum crop parameter development site. Ten years of crop performance data (Corn and Grain Sorghum) for Kansas Counties (Riley and Ellis) were used to select an optimum soil water (SW) estimation method (Saxton and Rawls, Ritchie et al., and a method that added 0.01 m m−1 to the minimum SW value given in the SSURGO soil database) and evapotranspiration (ET) method (Penman-Montieth, Priestley-Taylor, and Hargraeves and Samani) combination for use in the sweet sorghum parameter development. ALMANAC general parameters for corn and grain sorghum were used for the calibration/selection of the SW/ET combination. Variations in the harvest indexes were used to simulate variations in geo-climate region grain yield. A step through comparison method was utilized to select the appropriate SW/ET combination. Once the SW/ET combination was selected the combination was used to develop the sweet sorghum crop parameters. Two main conclusions can be drawn from the sweet sorghum crop parameter development study. First, the combination of Saxton and Rawls (2006) and Priestley-Taylor (1972) (SR-PT) methods has the potential for wide applicability in the US Central Plains for simulating grain yields using ALMANAC. Secondly, from the development of the sweet sorghum crop model parameters, ALMANAC modeled biomass yields with reasonable accuracy; differences from observed biomass values ranged from 0.89 to 1.76 Mg ha −1 (2.8 to 9.8%) in Kansas (Riley County), Oklahoma (Texas County), and Texas (Hale County). Future research for sweet sorghum physiology, Radiation Use Efficiency/Vapor Pressure Deficit relationships, and weather data integration would be useful in improving sweet sorghum biomass modeling.




Sweet Sorghum Production Based on Fertilizer Rates, Varieties, and Use of Grain Sorghum Model


Book Description

Evaluates the biomass and juice production for two sweet sorghum varieties across fertilizer rate and source in the Piedmont region of North Carolina. Evaluates the decision support system for agro-technology transfer (DSSAT) grain sorghum model and determines if it can be used for sweet sorghum growth prediction by comparing DSSAT simulated data with sweet sorghum observed data. Develops sweet sorghum crop parameters to improve the relationship between simulated data and observed data.




Mathematical Models of Crop Growth and Yield


Book Description

Highlighting effective, analytical functions that have been found useful for the comparison of alternative management techniques to maximize water and nutrient resources, this reference describes the application of viable mathematical models in data analysis to increase crop growth and yields. Featuring solutions to various differential equations, the book covers the characteristics of the functions related to the phenomenological growth model. Including more than 1300 literature citations, display equations, tables, and figures and outlining an approach to mathematical crop modeling, Mathematical Models of Crop Growth and Yield will prove an invaluable resource.




Advances in Crop Modelling for a Sustainable Agriculture


Book Description

Crop modelling has huge potential to improve decision making in farming. This collection reviews advances in next-generation models focused on user needs at the whole farm system and landscape scale.




Genetics, Genomics and Breeding of Sorghum


Book Description

Sorghum is one of the hardiest crop plants in modern agriculture and also one of the most versatile. Its seeds provide calorie for food and feed, stalks for building and industrial materials and its juice for syrup. This book provides an in-depth review of the cutting-edge knowledge in sorghum genetics and its applications in sorghum breeding. Each




Plant Breeding Reviews, Volume 36


Book Description

Plant Breeding Reviews presents state-of-the-art reviews on plant genetics and the breeding of all types of crops by both traditional means and molecular methods. Many of the crops widely grown today stem from a very narrow genetic base; understanding and preserving crop genetic resources is vital to the security of food systems worldwide. The emphasis of the series is on methodology, a fundamental understanding of crop genetics, and applications to major crops. It is a serial title that appears in the form of one or two volumes per year.




Corn and Grain Sorghum Comparison


Book Description

Corn and grain sorghum (Sorghum bicolor subsp. bicolor L) are among the top cereal crops world wide, and both are key for global food security. Similarities between the two crops, particularly their adaptation for warm-season grain production, pose an opportunity for comparisons to inform appropriate cropping decisions. This book provides a comprehensive review of the similarities and differences between corn and grain sorghum. It compares corn and sorghum crops in areas such as morphology, physiology, phenology, yield, resource use and efficiency, and impact of both crops in different cropping systems. Producers, researchers and extension agents in search of reliable scientific information will find this in-depth comparison of crops with potential fit in dryland and irrigations cropping systems particularly valuable. - Presents a wide range of points of comparison - Offers important insights for crop decision making










Crop Physiology Case Histories for Major Crops


Book Description

Crop Physiology: Case Histories of Major Crops updates the physiology of broad-acre crops with a focus on the genetic, environmental and management drivers of development, capture and efficiency in the use of radiation, water and nutrients, the formation of yield and aspects of quality. These physiological process are presented in a double context of challenges and solutions. The challenges to increase plant-based food, fodder, fiber and energy against the backdrop of population increase, climate change, dietary choices and declining public funding for research and development in agriculture are unprecedented and urgent. The proximal technological solutions to these challenges are genetic improvement and agronomy. Hence, the premise of the book is that crop physiology is most valuable when it engages meaningfully with breeding and agronomy. With contributions from 92 leading scientists from around the world, each chapter deals with a crop: maize, rice, wheat, barley, sorghum and oat; quinoa; soybean, field pea, chickpea, peanut, common bean, lentil, lupin and faba bean; sunflower and canola; potato, cassava, sugar beet and sugarcane; and cotton. A crop-based approach to crop physiology in a G x E x M context Captures the perspectives of global experts on 22 crops