Recent advances in crop protection


Book Description

In the recent years, the need to increase food production to meet the demands of rapidly increasing population from a limited land resource necessitated the use of intensive farming systems, with the inputs like narrow genetic base, high dose of fertilizers, pesticides, irrigation, monocropping, etc. which led to the development of diseases and pest. The effect of changing global climate, particularly the sharp increase in CO2 concentration, has increased the susceptibility of plants to pathogens and pests. Because of the chemicalization of agriculture, the age-old eco-friendly pest management practices like sanitation, crop rotation, mixed cropping, adjustment of date of planting, fallowing, summer ploughing, green manuring, composting, etc. are not being practiced, affecting the crops adversely. This has encouraged researchers to look for eco-friendly and novel approaches for pest management. The information on recent advances in crop protection (involving bacteria, fungi, nematodes, insects, mites and weeds) is scattered. The book delves upon the most latest developments in crop protection such as avermectins, bacteriophages, biofumigation, biotechnological approaches; bio-priming of seeds; disguising the leaf surface; use of non-pathogenic strains, plant defense activators, plant growth promoting rhizobacteria, pathogenesis-related proteins, strobilurin fungicides, RNA interference, and variety of mixtures/cultivar mixtures/multilines; soil solarization; biointensive integrated pest management; among several others (fusion protein-based biopesticides, seed mat technology and environmental methods). This book is a ready reference for students, policy-makers, scientists, researchers and extension workers.




Recent Highlights in the Discovery and Optimization of Crop Protection Products


Book Description

Recent Highlights in the Discovery and Optimization of Crop Protection Products highlights the most prominent, recent results in the search for safe and effective new crop protection products. With a focus on the design, synthesis, optimization and/or structure-activity relationships of new chemistries targeting insect, disease, weed, nematode, vector and animal parasite control, the book also includes recent developments in crop enhancement chemistries and new approaches to crop protection products. The inclusion of information on testing tools, green chemistry approaches, and the latest discovery tools, like modeling, structure-based design, and testing tools makes this volume complete. Based on key presentations given at the 14th International IUPAC conference on Crop Protection, May 19-24, 2019 in Ghent, Belgium, this book includes the many exciting new discoveries and findings reported. It is designed to inspire additional research and advancement in the field. - Based on science presented at the 2019 International Union of Pure and Applied Chemistry Conference on Crop Protection - Provides real-world perspectives on pesticide and disease control progress - Presents scientific developments from an international array of contributing authors




Crop Protection Research Advances


Book Description

Book & CD. Most crop protection deals with the development and promotion of socially and environmentally acceptable technologies to reduce crop losses from pests. Crop protection also deals with protecting crops from weeds, insects and diseases primarily to increase yield. The use of crop protection products secures yields, reduces crop losses and helps provide a sufficient and sustainable supply of healthy and safe food at affordable prices. Ultimately, crop protection tries to increase global food demand. It also deals with efforts to assure food quality and safety. This book presents the latest research from around the globe.




Science Breakthroughs to Advance Food and Agricultural Research by 2030


Book Description

For nearly a century, scientific advances have fueled progress in U.S. agriculture to enable American producers to deliver safe and abundant food domestically and provide a trade surplus in bulk and high-value agricultural commodities and foods. Today, the U.S. food and agricultural enterprise faces formidable challenges that will test its long-term sustainability, competitiveness, and resilience. On its current path, future productivity in the U.S. agricultural system is likely to come with trade-offs. The success of agriculture is tied to natural systems, and these systems are showing signs of stress, even more so with the change in climate. More than a third of the food produced is unconsumed, an unacceptable loss of food and nutrients at a time of heightened global food demand. Increased food animal production to meet greater demand will generate more greenhouse gas emissions and excess animal waste. The U.S. food supply is generally secure, but is not immune to the costly and deadly shocks of continuing outbreaks of food-borne illness or to the constant threat of pests and pathogens to crops, livestock, and poultry. U.S. farmers and producers are at the front lines and will need more tools to manage the pressures they face. Science Breakthroughs to Advance Food and Agricultural Research by 2030 identifies innovative, emerging scientific advances for making the U.S. food and agricultural system more efficient, resilient, and sustainable. This report explores the availability of relatively new scientific developments across all disciplines that could accelerate progress toward these goals. It identifies the most promising scientific breakthroughs that could have the greatest positive impact on food and agriculture, and that are possible to achieve in the next decade (by 2030).




Advances Plant Phenotyping More Sustaihb


Book Description

Plant phenotyping is an emerging technology that involves the quantitative analysis of structural and functional plant traits. However, it is widely recognised that phenotyping needs to match similar advances in genetics if it is to not create a bottleneck in plant breeding. Advances in plant phenotyping for more sustainable crop production reviews the wealth of research on advances in plant phenotyping to meet this challenge, such as the development of new technologies including hyperspectral sensors such as LIDAR, NIR/SWIR, as well as alternative delivery/carrier systems, such as ground-based proximal distance systems and UAVs. The book details the development of plant phenotyping as a technique to analyse crop roots and functionality, as well as its use in understanding and improving crop response to biotic and abiotic stresses.




Advances Seed Science Technology More Hb


Book Description

Seed quality is critical to achieving successful crop cultivation, propagation and breeding, whilst seeds are also pivotal to the conservation and management of plant genetic resources. The sector must develop a better understanding of seed quality, germination and seedling emergence to ensure successful crop establishment. Advances in seed science and technology for more sustainable crop production provides an authoritative review of the wealth of current research on key advances in seed science and technology. The collection considers the development of new techniques to ensure seed quality control, including seed phenotyping, hyper-spectral imaging and electrophotography. Later chapters discuss advances in seed coating, conditioning and priming techniques, as well as the growing use of biostimulant-based seed treatments throughout agriculture.




Precision Crop Protection - the Challenge and Use of Heterogeneity


Book Description

Precision farming is an agricultural management system using global navigation satellite systems, geographic information systems, remote sensing, and data management systems for optimizing the use of nutrients, water, seed, pesticides and energy in heterogeneous field situations. This book provides extensive information on the state-of-the-art of research on precision crop protection and recent developments in site-specific application technologies for the management of weeds, arthropod pests, pathogens and nematodes. It gives the reader an up-to-date and in-depth review of both basic and applied research developments. The chapters discuss I) biology and epidemiology of pests, II) new sensor technologies, III) applications of multi-scale sensor systems, IV) sensor detection of pests in growing crops, V) spatial and non-spatial data management, VI) impact of pest heterogeneity and VII) precise mechanical and chemical pest control.




Biopesticides for Sustainable Agriculture


Book Description

Part 1 of this collection reviews research on developing and assessing new biopesticides. Part 2 summarises advances in different types of entomopathogenic biopesticide. Part 3 assesses semiochemical, peptide-based and other natural substance-based biopesticides.




Allium Crop Science


Book Description

The Alliums are some of the most ancient cultivated crops and include onions, garlic, leeks and other related plants. This book provides an up-to-date review of Allium science for postgraduates and researchers. It contains commissioned chapters on topics that have shown major advances particularly in the last ten years such as molecular biology, floriculture and biofertilizers.




Improving Integrated Pest Management in Horticulture


Book Description

This collection reviews current advances in integrated pest management (IPM) for horticultural crops, including the use of biological control mechanisms, technological developments such as proximal sensors, agronomic practices and physical control.