Crop Response to Waterlogging


Book Description




Plant responses to flooding


Book Description




Stress Tolerance in Horticultural Crops


Book Description

Stress Tolerance in Horticultural Crops: Challenges and Mitigation Strategies explores concepts, strategies and recent advancements in the area of abiotic stress tolerance in horticultural crops, highlighting the latest advances in molecular breeding, genome sequencing and functional genomics approaches. Further sections present specific insights on different aspects of abiotic stress tolerance from classical breeding, hybrid breeding, speed breeding, epigenetics, gene/quantitative trait loci (QTL) mapping, transgenics, physiological and biochemical approaches to OMICS approaches, including functional genomics, proteomics and genomics assisted breeding. Due to constantly changing environmental conditions, abiotic stress such as high temperature, salinity and drought are being understood as an imminent threat to horticultural crops, including their detrimental effects on plant growth, development, reproduction, and ultimately, on yield. This book offers a comprehensive resource on new developments that is ideal for anyone working in the field of abiotic stress management in horticultural crops, including researchers, students and educators. - Describes advances in whole genome and next generation sequencing approaches for breeding climate smart horticultural crops - Details advanced germplasm tolerance to abiotic stresses screened in the recent past and their performance - Includes advancements in OMICS approaches in horticultural crops




Climate Change and Crop Stress


Book Description

Climate Change and Crop Stress: Molecules to Ecosystems expounds on the transitional period where science has progressed to 'post-genomics' and the gene editing era, putting field performance of crops to the forefront and challenging the production of practical applicability vs. theoretical possibility. Researchers have concentrated efforts on the effects of environmental stress conditions such as drought, heat, salinity, cold, or pathogen infection which can have a devastating impact on plant growth and yield. Designed to deliver information to combat stress both in isolation and through simultaneous crop stresses, this edited compilation provides a comprehensive view on the challenges and impacts of simultaneous stresses. Presents a multidisciplinary view of crop stresses, empowering readers to quickly align their individual experience and perspective with the broader context Combines the mechanistic aspects of stresses with the strategic aspects Presents both abiotic and biotic stresses in a single volume




Managing Plant Production Under Changing Environment


Book Description

This comprehensive edited volume collects the most recent information with up-to-date citations, on the decrease in plant productivity under climatic changes and its link with global food security. The book emphasis on the crop management practices and recent advancement in the techniques for mitigating the negative effects of climate induced biotic and abiotic stress. It brings together 19 chapters developed by eminent researchers in the area of plant and environmental sciences. Global climate change is increasingly becoming a concern for future of agriculture. High levels of inorganic and organic pollutants and climatic stress adversely affects the sensitive and complex equation of natural resources and ecosystem services. To meet the increased food demand, plant productivity needs to be enhanced, therefore this book fills in the gap and brings together information on the physiological and molecular approaches for improving crop productivity. The book is resourceful reading material for researchers, faculty members, graduate and post graduate students of plant science, agriculture, agronomy, soil science, botany, Molecular biology and environmental science.




Crop Stress and its Management: Perspectives and Strategies


Book Description

Crops experience an assortment of environmental stresses which include abiotic viz., drought, water logging, salinity, extremes of temperature, high variability in radiation, subtle but perceptible changes in atmospheric gases and biotic viz., insects, birds, other pests, weeds, pathogens (viruses and other microbes). The ability to tolerate or adapt and overwinter by effectively countering these stresses is a very multifaceted phenomenon. In addition, the inability to do so which renders the crops susceptible is again the result of various exogenous and endogenous interactions in the ecosystem. Both biotic and abiotic stresses occur at various stages of plant development and frequently more than one stress concurrently affects the crop. Stresses result in both universal and definite effects on plant growth and development. One of the imposing tasks for the crop researchers globally is to distinguish and to diminish effects of these stress factors on the performance of crop plants, especially with respect to yield and quality of harvested products. This is of special significance in view of the impending climate change, with complex consequences for economically profitable and ecologically and environmentally sound global agriculture. The challenge at the hands of the crop scientist in such a scenario is to promote a competitive and multifunctional agriculture, leading to the production of highly nourishing, healthy and secure food and animal feed as well as raw materials for a wide variety of industrial applications. In order to successfully meet this challenge researchers have to understand the various aspects of these stresses in view of the current development from molecules to ecosystems. The book will focus on broad research areas in relation to these stresses which are in the forefront in contemporary crop stress research.







Salinity and Water Stress


Book Description

Salinity and water stress limit crop productivity worldwide and generate substantial economic losses each year, yet innovative research on crop and natural resource management can reveal cost-effective ways in which farmers can increase both their productivity and their income. Presenting recent research findings on salt stress, water stress and stress-adapted plants, this book offers insights into new strategies for increasing the efficiency of crops under stressful environments. The strategies are based on conventional breeding and advanced molecular techniques used by plant physiologists, and are discussed using specific case studies to illustrate their potential. The book emphasizes the effects of environmental factors on specific stages of plant development, and discusses the role of plant growth regulators, nutrients, osmoprotectants and antioxidants in counteracting their adverse affects. Synthesising updated information on mechansisms of stress tolerance at cell, tissue and whole-plant level, this book provides a useful reference text for post graduate students and researchers involved in the fields of stress physiology and plant physiology in general, with additional readership amongst researchers in horticulture, agronomy, crop science, conservation, environmental management and ecological restoration.




Water Stress and Crop Plants


Book Description

Plants are subjected to a variety of abiotic stresses such as drought, temperature, salinity, air pollution, heavy metals, UV radiations, etc. To survive under these harsh conditions plants are equipped with different resistance mechanisms which vary from species to species. Due to the environmental fluctuations agricultural and horticultural crops are often exposed to different environmental stresses leading to decreased yield and problems in the growth and development of the crops. Drought stress has been found to decrease the yield to an alarming rate of some important crops throughout the globe. During last few decades, lots of physiological and molecular works have been conducted under water stress in crop plants. Water Stress and Crop Plants: A Sustainable Approach presents an up-to-date in-depth coverage of drought and flooding stress in plants, including the types, causes and consequences on plant growth and development. It discusses the physiobiochemical, molecular and omic approaches, and responses of crop plants towards water stress. Topics include nutritional stress, oxidative stress, hormonal regulation, transgenic approaches, mitigation of water stress, approaches to sustainability, and modern tools and techniques to alleviate the water stress on crop yields. This practical book offers pragmatic guidance for scientists and researchers in plant biology, and agribusinesses and biotechnology companies dealing with agronomy and environment, to mitigate the negative effects of stress and improve yield under stress. The broad coverage also makes this a valuable guide enabling students to understand the physiological, biochemical, and molecular mechanisms of environmental stress in plants.




Waterlogging Signalling and Tolerance in Plants


Book Description

In the last half century, because of the raising world population and because of the many environmental issues posed by the industrialization, the amount of arable land per person has declined from 0.32 ha in 1961–1963 to 0.21 ha in 1997–1999 and is expected to drop further to 0.16 ha by 2030 and therefore is a severe menace to food security (FAO 2006). At the same time, about 12 million ha of irrigated land in the developing world has lost its productivity due to waterlogging and salinity. Waterlogging is a major problem for plant cultivation in many regions of the world. The reasons are in part due to climatic change that leads to the increased number of precipitations of great intensity, in part to land degradation. Considering India alone, the total area suffering from waterlogging is estimated to be about 3.3 million ha (Bhattacharya 1992), the major causes of waterlogging include super- ous irrigation supplies, seepage losses from canal, impeded sub-surface drainage, and lack of proper land development. In addition, many irrigated areas are s- jected to yield decline because of waterlogging due to inadequate drainage systems. Worldwide, it has been estimated that at least one-tenth of the irrigated cropland suffers from waterlogging.