Cross Talk Between Nitric Oxide and Phytohormones Regulate Plant Development During Abiotic Stresses


Book Description

Plants, being sessile, are concurrently exposed to various biotic and abiotic stresses. The perception of stress signals in plants involves a wide spectrum of signal transduction pathways that interact to induce tolerance against adverse environmental conditions. This functional overlapping among various stress signaling cascades also leads to the expression of genes that regulate biosynthesis or action of other hormones. Phytohormonal signals, activated by both developmental and environmental responses, play a crucial role to develop stress tolerance in plants. Nitric oxide (NO) is one of the major players in plant signaling networks. Emerging evidence supports that NO interplays with signaling pathways of auxins, gibberellins, abscisic acid, ethylene, jasmonic acid, brassinosteroids, and other plant hormones to control metabolism, growth, and development in plants. This chapter focuses on the current state of knowledge of cross talk between signaling pathways of NO and phytohormones in plants exposed to various abiotic stresses.




Phytohormones and Abiotic Stress Tolerance in Plants


Book Description

Plants are sessile and prone to multiple stresses in the changing environmental conditions. Of the several strategies adopted by plants to counteract the adverse effects of abiotic stress, phytohormones provide signals to allow plants to survive under stress conditions. They are one of the key systems integrating metabolic and developmental events in the whole plant and the response of plants to external factors and are essential for many processes throughout the life of a plant and influence the yield and quality of crops. The book ‘Phytohormones and Abiotic Stress Tolerance in Plants’ summarizes the current body of knowledge on crosstalk between plant stresses under the influence of phytohormones, and provides state-of-the-art knowledge of recent developments in understanding the role of phytohormones and abiotic stress tolerance in plants. This book presents information on how modulation in phytohormone levels affect regulation of biochemical and molecular mechanisms.




Phytohormones


Book Description

Phytohormones are regulatory compounds that play crucial roles in plants. This book brings together recent work and progress that has recently been made in the dynamic field of phytohormone regulation in plant development and stress responses. It also provides new insights and sheds new light regarding the exciting hormonal cross talk phenomenon in plants. This book will provoke interest in many readers and scientists, who can find this information useful for the advancement of their research works.




Nitric Oxide in Plants


Book Description

ORGANIC REACTIONS Examines the beneficial roles of nitric oxide in growth and stress tolerance regulation through its involvement in tolerance mechanisms Studies have identified the central role of nitric oxide in stress mitigation through the modulation of physiological and biochemical pathways including germination, photosynthesis regulation, and programmed cell death. Nitric Oxide in Plants: A Molecule with Dual Roles provides a detailed account of the physio-biochemical, molecular, and omic basis of NO-mediated responses in crop plants under different stresses. Summarizing recent work from leading researchers in the field, this up-to-date volume presents the current understanding of the modulation of the endogenous nitric oxide concentration following exogenous treatments and nitric oxide scavengers or inhibitors. The contributors discuss topics such as NO-mediated regulation of growth, photosynthesis, and tolerance mechanisms, the reductive and oxidative pathways of NO synthesis, molecular interventions for enhancing NO synthesis, the role of nitrogen in production of NO, beneficial microbes in NO production under normal and changing environmental conditions, and more. Includes an overview of the biosynthesis and regulation of NO synthesis in plants Describes the enzymatic and non-enzymatic biosynthesis of NO and the influence of different stress factors on NO synthesis Explores the role of reactive oxygen, sulphur, and nitrogen species in stress signaling Discusses endogenous and exogenous NO in modifying the ascorbate-glutathione cycle Explains the crosstalk mechanisms underlying NO and phytohormones, including auxins, cytokinins, abscisic acid, and ethylene Nitric Oxide in Plants: A Molecule with Dual Roles is an essential resource for academics, students, and industry professionals studying the role of nitric oxide in environmental stress tolerance and its interaction with key signaling molecules.




Reactive Oxygen, Nitrogen and Sulfur Species in Plants


Book Description

Presents a multidisciplinary analysis of the integration among reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS). Since plants are the main source of our food, the improvement of their productivity is the most important task for plant biologists. In this book, leading experts accumulate the recent development in the research on oxidative stress and approaches to enhance antioxidant defense system in crop plants. They discuss both the plant responses to oxidative stress and mechanisms of abiotic stress tolerance, and cover all of the recent approaches towards understanding oxidative stress in plants, providing comprehensive information about the topics. It also discusses how reactive nitrogen species and reactive sulfur species regulate plant physiology and plant tolerance to environmental stresses. Reactive Oxygen, Nitrogen and Sulfur Species in Plants: Production, Metabolism, Signaling and Defense Mechanisms covers everything readers need to know in four comprehensive sections. It starts by looking at reactive oxygen species metabolism and antioxidant defense. Next, it covers reactive nitrogen species metabolism and signaling before going on to reactive sulfur species metabolism and signaling. The book finishes with a section that looks at crosstalk among reactive oxygen, nitrogen, and sulfur species based on current research done by experts. Presents the newest method for understanding oxidative stress in plants. Covers both the plant responses to oxidative stress and mechanisms of abiotic stress tolerance Details the integration among reactive oxygen species (ROS), reactive nitrogen species (RNS) and reactive sulfur species (RSS) Written by 140 experts in the field of plant stress physiology, crop improvement, and genetic engineering Providing a comprehensive collection of up-to-date knowledge spanning from biosynthesis and metabolism to signaling pathways implicated in the involvement of RONSS to plant defense mechanisms, Reactive Oxygen, Nitrogen and Sulfur Species in Plants: Production, Metabolism, Signaling and Defense Mechanisms is an excellent book for plant breeders, molecular biologists, and plant physiologists, as well as a guide for students in the field of Plant Science.




Nitric Oxide in Developing Plant Stress Resilience


Book Description

Nitric Oxide in Developing Plant Stress Resilience presents a strong focus on genetics and molecular mechanisms, examining crosstalk with other signaling molecules and the role this plays in the alleviation of oxidative damage. Abiotic stress negatively impacts plants productivity and alters the metabolism at the cellular or whole plant level, disturbing the mineral nutrients status, enzyme activities and osmotic homeostasis. Beginning with the biosynthesis of NO and its mode of action, chapters review various molecular interactions, including phytohormonal crosstalk, ROS metabolism, post-translational modification, and nutrients homeostasis. In addition, the book also highlights genome editing and proteomic approaches that can be used to manipulate NO responses. This is an essential resource for students and researchers interested in plant physiology, biochemistry and genetics. Highlights how Nitric Oxide acts as a signaling molecule and the ways in which this can help plants develop stress tolerance Discusses how NO interacts with other signaling molecules, including crosstalk Considers the advances and future implications of NO in agriculture




Brassinosteroids Signalling


Book Description

This book presents the state of the skill of understanding brassinosteroids (BRs) signaling plus crosstalk with phytohormone and their association in plant adaptation to abiotic stresses comprising physiological, biochemical, and molecular developments. Due to progressively adverse environmental conditions and scarce natural resources, high-efficient crops have become more important than ever. For the successful improvement of stress-tolerant plants, it is vital to understand the precise signaling appliances that plants practice to abide stresses as well as how much these mechanisms are convinced by phytohormone. However, it is also debatable on which step plants can attain brassinosteroids (BRs) signaling from an evolutionary viewpoint. BRs are involved in modulating a large array of important functions throughout a plant’s life cycles. BRs are considered as one of the most important plant steroidal hormones that show a varied role in observing a wide range of developmental practices in plants. Our grip on brassinosteroids signaling has quickly extended over the past two decades, owing in part to the isolation of the constituents intricate in the signal transduction trail. The book proposes a useful guide for plant researchers and graduate students in connected areas.




Phytohormones in Abiotic Stress


Book Description

Plants are continuously exposed to different environmental stresses that negatively impact their physiology and morphology, resulting in production reduction. As a result of constant pressure, plants evolve different mechanisms for sustenance and survival. Hormones play a major role in defences against the stresses and stimulate regulatory mechanisms. One of the ways through which they mitigate stress is via the production of hormones like auxins, ethylene, jasmonic acid, etc. The phytohormones help in signaling and enhance the chances of their survival. Plant hormones play many vital roles from integrating developmental events, physiological and biochemical processes to mediating both abiotic and biotic stresses. This book aims to highlight these issues and provide scope for the development of tolerance in crops against abiotic stresses to maximize yield for the growing population. There is an urgent need for the development of strategies, methods and tools for the broad-spectrum tolerance in plants supporting sustainable crop production under hostile environmental conditions. The salient features are as follows: • It includes both traditional and non-traditional phytohormones and focuses on the latest progress emphasizing the roles of different hormones under abiotic stresses. • It provides a scope of the best plausible and suitable options for overcoming these stresses and puts forward the methods for crop improvement. • It is an amalgamation of the biosynthesis of phytohormones and also provides molecular intricacies and signalling mechanisms in different abiotic stresses. • This book serves as a reference book for scientific investigators from recent graduates, academicians and researchers working on phytohormones and abiotic stresses.




Nitric Oxide Action in Abiotic Stress Responses in Plants


Book Description

This book offers an up-to-date review of the regulatory role of nitric oxide (NO) changes in the morphological, physio-biochemical as well as molecular characteristics of plants under abiotic stress. The first of two parts comprises four chapters and focuses on the properties, chemical reactions involving NO and reactive nitrogen species in plants. The second part, consisting of eleven chapters, describes the current understanding of the role of NO in the regulation of gene expression, NO signaling pathways and its role in the up-regulation of the endogenous defense system and programmed cell death. Furthermore, its interactions with other signaling molecules and plant hemoglobins under environmental and soil related abiotic stresses, including post-harvest stress in fruits, vegetables and ornamentals and wounding are discussed in detail. Together with the companion book Nitric Oxide in Plants: Metabolism and Role in Stress Physiology, this volume provides a concise overview of the field and offers a valuable reference work for teachers and researchers in the fields of plant physiology, biochemistry and agronomy.




Polar Auxin Transport


Book Description

The importance of the plant growth regulator auxin for plant growth has long been recognized, even before the discovery of its chemical structures in the early 20th century. Physiological studies in the decades since have demonstrated that auxin is unidirectionally transported in plants, a process dubbed polar auxin transport. It is the polar auxin transport process that generates a local auxin concentration gradient and regulates a broad array of physiological and developmental processes. The discoveries of auxin transport carrier proteins that mediate auxin influx into and efflux out of transport-competent cells and auxin receptor proteins for auxin signaling in the last few decades represent significant milestones in auxin research and open up opportunities to probe the cellular and molecular processes that regulate auxin transport and integrate environmental cues with signaling processes. Remarkably, components of the polar auxin transport machinery are present in both lower plants such as mosses and higher plants including monocots and eudicots, illustrating the key role of polar auxin transport in plant evolution. This book highlights topics ranging from physiological and genetic studies of polar auxin transport in plant development, to growth responses to the environment and plant-microbe interactions, to hormonal cross-talks with various cellular and molecular regulatory processes essential for polar auxin transport.