Crosstalk between Peripheral and Local Immune Response in the Pathophysiology of Stroke and Neurodegeneration Diseases, Volume II


Book Description

Accumulating evidence reveals both local and peripheral immune systems participated in the pathophysiology changes of acute and chronic neurological diseases. Immune cell activation facilitates inflammatory response in neurological diseases such as stroke, Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. The immune response initiated by brain local cells (microglia and astrocytes) and peripheral blood cells (monocytes/macrophages, neutrophil, T cells, B cells), are now commonly thought to contribute “double-edged sword” effects to the progression of neurological diseases, which not only promoting repair and recovery, but also accelerating brain injury. Meanwhile, local and peripheral immune responses have complex crosstalk in the development of post-stroke injury and neurodegeneration disease.




Trends in Neuroimmunology: cross-talk between brain-resident and peripheral immune cells in both health and disease


Book Description

The functional anatomy of organisms is maintained by the coordination of different systems, that often rely on particular interactions between specialized cells and between macromolecules. The immune system works with the circulatory and the lymphatic systems to protect most of the organs. However, some organs are considered immune privileged due to the presence of highly selective and regulated barriers, such as the blood-brain barrier (BBB) within the brain. The BBB controls periphery-brain molecule exchange and prevents immune effector cells from entering the homeostatic brain. BBB-associated elements, such as endothelial cells, pericytes, astrocytes, and microglia, potentially can function as antigen-presenting cells (APC). Pathological scenarios that induce dysfunction of the BBB and its associated cells may lead to the infiltration of lymphocytes crossing over from the blood to brain. Similarly, traumas can also enable B and T lymphocytes to pass bidirectionally between the CNS and the periphery, via the meningeal lymphatic vessels which drain into the cervical lymph nodes. Research in animals and in humans has revealed that B and T cells are involved in the progression of neurological diseases. It has been showed that under particular conditions, T cells establish themselves and become resident in the brain (T RM cells), from where they can either exert beneficial or detrimental effects on brain function. Amazing efforts have been made to further comprehend interactions between brain-specific cells and peripheral immune cells, and especially their roles and impact on the onset, progression, and eventual resolution of diverse brain pathologies.




Clinical Immunology


Book Description

Offers answers to challenges in clinical immunology. This book contains immunology knowledge and includes a companion web site to give you two ways to find the answers you need.




Neuroimmune Diseases


Book Description

A translational overview of neuroimmune diseases for neuroscientists and clinicians that clarifies the pathological mechanisms underlying neuroimmune diseases and builds a comprehensive bridge between the latest research findings and their clinical implications in daily practice. The material is presented in two steps. The first section comprises a review of the pathogenic actions of immune cells in brain diseases. Here the authors discuss the mechanisms through which immune cells disrupt the functions of nerve cells. The second section explores the ways in which the brain becomes dysfunctional due to impaired nerve cell function. Based on pathogenesis, diagnostic and therapeutic strategies are discussed for each clinical category. The book will be invaluable for use in clinical practice of neuroimmune diseases




The Prion Protein


Book Description

A conformational transition of the cellular prion protein (PrPC) into an aberrantly folded isoform designated scrapie prion protein (PrPSc) is the hallmark of a variety of neurodegenerative disorders collectively called prion diseases. They include Creutzfeldt-Jakob disease and Gerstmann-Stäussler-Scheinker syndrome in humans, scrapie in sheep, bovine spongiform encephalopathy (BSE) in cattle and chronic wasting disease (CWD) in free-ranging deer. In contrast to the deadly properties of misfolded PrP, PrPC seems to possess a neuroprotective activity. More-over, animal models indicated that the stress-protective activity of PrPC and the neurotoxic effects of PrPSc are somehow interconnected. In this timely book, leading scientists in the field have come together to highlight the apparently incongruous activities of different PrP conformers. The articles outline current research on celluar pathways implicated in the formation and signaling of neurotoxic and physiological PrP isoforms and delineate future research direction. Topics covered include the physiologcial activity of PrPC and its possible role as a neurotrophic factor, the finding that aberrant PrP conformers can cause neurodegeneration in the absence of infectious prion propagation, the requirement of the GPI anchor of PrPC for the neurotoxic effects of scrapie prions, the pathways implicated in the formation and neurotoxic properties of cytosolically localized PrP, the impact of metal ions on the processing of PrP, and the role of autophagy in the propagation and clearance of PrPSc. The book is fully illustrated and chapters include comprehensive reference sections. Essential reading for scientists involved in prion research.




Leucine-Rich Repeat Kinase 2 (LRRK2)


Book Description

This is the first book to assemble the leading researchers in the field of LRRK2 biology and neurology and provide a snapshot of the current state of knowledge, encompassing all major aspects of its function and dysfunction. The contributors are experts in cell biology and physiology, neurobiology, and medicinal chemistry, bringing a multidisciplinary perspective on the gene and its role in disease. The book covers the identification of LRRK2 as a major contributor to the pathogenesis of Parkinson's Disease. It also discusses the current state of the field after a decade of research, putative normal physiological roles of LRRK2, and the various pathways that have been identified in the search for the mechanism(s) of its induction of neurodegeneration.







The Blood Brain Barrier (BBB)


Book Description

Medicinal chemistry is both science and art. The science of medicinal chemistry offers mankind one of its best hopes for improving the quality of life. The art of medicinal chemistry continues to challenge its practitioners with the need for both intuition and experience to discover new drugs. Hence sharing the experience of drug research is uniquely beneficial to the field of medicinal chemistry. Drug research requires interdisciplinary team-work at the interface between chemistry, biology and medicine. Therefore, the topic-related series Topics in Medicinal Chemistry covers all relevant aspects of drug research, e.g. pathobiochemistry of diseases, identification and validation of (emerging) drug targets, structural biology, drugability of targets, drug design approaches, chemogenomics, synthetic chemistry including combinatorial methods, bioorganic chemistry, natural compounds, high-throughput screening, pharmacological in vitro and in vivo investigations, drug-receptor interactions on the molecular level, structure-activity relationships, drug absorption, distribution, metabolism, elimination, toxicology and pharmacogenomics. In general, special volumes are edited by well known guest editors.