Crustal Evolution of Southern Africa


Book Description

Syntheses of the geology of major areas of the Earth's crust are increasingly needed in order that the features of, and the problems associated with, the secular evolution of the continents can be understood by a wide audience. Southern Africa is fortunate in having a remarkable variety of geological environments developed without many breaks over 3. 8 Ga, and many of the rock groups are household names throughout the geological world. In one respect the geology of Southern Africa is particularly important: cratonization clearly began as early as 3. 0 Ga ago, in contrast to about 2. 5 Ga in most other continental areas such as North America. This book documents very well the remarkable change in tectonic conditions that took place between the Early and Mid-Precambrian; we have here evidence of the very earliest development of rigid lithospheric plates. This book is a tribute to the multitudes of scientists who have worked out the geology of Southern Africa over many years and decades. Whatever their discipline, each provided a step in the construction of this fascinating story of 3. 8 Ga of crustal development. In the book the reader will find a detailed review of the factual data, together with a balanced account of interpretative models without the indulgence of undue speculation. One of its attractions is its multidisciplinary approach which provides a stimulating challenge to the reader.




The Archaean Geology of the Kaapvaal Craton, Southern Africa


Book Description

This book provides a comprehensive overview of the evolution of one of the oldest and best-exposed Archaean cratons on this planet. There is currently a renewed interest in the early Earth, and the Kaapvaal craton has long served as a model for early crustal evolution. This unique multidisciplinary resource features information on geology, tectonics, geochemistry, and geochronology. It offers a wealth of new data on various aspects of the craton as well as contributions on the various crustal units by international specialists.




Geology of Southwest Gondwana


Book Description

This book focuses on the geological evolution of Southwest (SW) Gondwana and presents state-of-the-art insights into its evolution. It addresses the diachronic assembly of continental fragments derived from the break-up of the Rodinia supercontinent later amalgamated to build SW Gondwana during the Neoproterozoic–Cambrian transition, which on a global scale includes parts of present-day South America, Africa and Madagascar. The book presents 24 state-of-the-art reviews including the most crucial controversies. Most experienced scientists about the geology of SW Gondwana from Europe, Africa, South America and Australia present contributions on key areas addressing the interactions between the main cratons and fold belts on both sides of the South Atlantic Ocean. Chapters related to the geology of the major Archean- Paleoproterozoic cratons and Neoproterozoic Brasiliano/Pan-African fold belts enable readers to gain an in-depth understanding of the tectonometamorphic and magmatic evolution of SW Gondwana. The book covers a wide range of issues including metallogenetic, sedimentary, paleobiological and paleoclimatic processes and allows a deep insight into this key period of the Earth’s evolution.




The Formation and Evolution of Africa


Book Description

The African continent preserves a long geological record that covers almost 75% of Earth's history. The Pan-African orogeny (c. 600-500 Ma) brought together old continental kernels (West Africa, Congo, Kalahari and Tanzania) to form Gondwana and subsequently the supercontinent Pangaea by the late Palaeozoic. The break-up of Pangaea since the Jurassic and Cretaceous, primarily through opening of the Central Atlantic, Indian, and South Atlantic oceans, in combination with the complicated subduction history to the north, gradually shaped the African continent. This volume contains 18 contributions that discuss the geology of Africa from the Archaean to the present day.







Granulites and Crustal Evolution


Book Description

Proceedings of the NATO Advanced Research Workshop on Petrology and Geochemistry of Granulites, Clermont-Ferrand, France, September 5-9, 1988




Quaternary Environmental Change in Southern Africa


Book Description

This book provides a benchmark study of southern African landscape evolution during the Quaternary, for researchers, professionals and policymakers.




A Scientific Bibliography of the Far Northern Drakensberg


Book Description

This Scientific Bibliography of the “Far Northern Drakensberg” is a continuation by the Afromontane Research Unit of the University of the Free State (ARU) to document published and other similar works on the mountains of the summer rainfall area of South Africa. It follows “A Scientific Bibliography of the Drakensberg, Maloti and Adjacent Lowlands” which was published in 2020 (Moffett 2020), and which covered the area between the North-Eastern Cape and the North-Eastern Free State. The current work extends this northward by including articles and publications dating back to 1875 (E.Cohen, on the Lydenburg goldfields) reaching as far as the Wolkberg and Woodbush near Tzaneen in Limpopo Province. Figure 1 shows the boundary of the area covered, and although referred to as the Far Northern Drakensberg in this work, it is identical to that described as the LMEE, Limpopo, Mpumalanga & Eswatini Escarpment by Clarke et al (2022). Although slightly separate from the “lower” escarpment, the mountainous Barberton and adjacent Eswatini area, as well as the Leolo Mountains in eastern Sekhukhuneland are also included. Details on how the boundary in figure 1 was determined are given in Clark et al (2022). Bibliographies on two further ranges in the summer rainfall area, viz. the Magaliesberg in Gauteng province and the Soutpansberg in Limpopo province are to be the subject of future compilations.




Proterozoic Crustal Evolution


Book Description

As a final product of the International Geological Correlation Program (IGCP) Project 217, this volume brings together significant advances in the understanding of Proterozoic crustal evolution. This IGCP Project focussed on nine research objectives: 1) Comparison of Archean and Proterozoic supracrustal assemblages to more fully understand differences between Archean and post-Archean tectonic regimes; 2) To more fully understand the geochemical differences between Archean and post-Archean sediments and to evaluate the various factors that control sediment composition; 3) From combined U/Pb zircon and whole-rock Sm/Nd studies, to see if the apparent 2.4-2.0 continental crust "generation gap" is real; 4) To employ new techniques in the dating of individual zircons to more fully understand Proterozoic tectonic history and the role of crustal reworking; 5) From trace element ratios and Nd isotopic data from basalts, to better understand Proterozoic mantle evolution; 6) To encourage more detailed studies of the anorogenic granite-anorthosite association to better understand its origin and significance in terms of crustal evolution; 7) From combined Nd, Pb, and Sr isotopic data, to more precisely estimate the amount of new continental crust formed during the Proterozoic; 8) To encourage joint P-T and geochronological studies of Proterozoic and high-grade terranes to better understand Proterozoic orogenesis: and 9) To try and understand why hydrothermal precious metal deposits are relatively rare in the Proterozoic compared to both the Archean and the Phanerozoic. The book should be of interest to professionals in the geosciences (especially geochemists, petrologists and structural geologists) and graduate students in the same fields.




Archean Crustal Evolution


Book Description

The integration of Tectonics/Geochemistry, up-to-date reviews by leading scientists as well as a broad topical coverage of the Archean, are some of the features of this particular volume. As geochronology has progressed in the last 20 years, the Archean has continued to attract interest. Advancements in the understanding of Archean crustal and mantle evolution have progressed rapidly since the first International Archean Symposium in Western Australia (1970). The landmark for the Archean was the NATO Advanced Study Institute at Leicester (1975). At this meeting the Archean truly "came of age". Investigators from many different disciplines focused their expertise on the early history of the earth. For the first time, the nature of the atmosphere, oceans, and life during the Archean was an important part of an Archean symposium. During the most recent Archean Symposium in Perth in 1990, there was a shift in interest from field and trace element data to the new rapidly evolving high-precision U/Pb geochronology of Archean rocks and to detailed structural studies of both low and high grade Archean terrains. The terrane concept so widely applied to the Phanerozoic was proposed for the Archean Yilgarn Province in Western Australia and is now widely accepted for the Archean (as evident by the articles in this book). Plate tectonics is now widely accepted as the principal process that controls the history of continents and oceans. There are, though, well substantiated differences between Archean and post-Archean rocks that indicate that Archean tectonic regimes must have differed in some respects from modern ones. The question of how and to what degree did Archean plate tectonics differ from modern plate tectonics is treated in many of the chapters of this book. Altogether, the editor has presented a selection of articles that provide a fascinating insight into the latest observations in this field.