Single-particle Cryo-electron Microscopy


Book Description

The book reproduces 55 of more than 300 articles written by the author, representing milestones in methods development of single-particle cryo-EM as well as important results obtained by this technique in the study of biological macromolecules and their interactions. Importantly, neither symmetries nor ordered arrangements (as in two-dimensional crystals, helical assemblies, icosahedral viruses) are required. Although the biological applications are mainly in the area of ribosome structure and function, the elucidation of membrane channel structures and their activation and gating mechanisms are represented, as well. The book is introduced by a commentary that explains the original development of concepts, describes the contributions of the author's colleagues and students, and shows how challenges were overcome as the technique matured. Along the way, the ribosome served as an example for a macromolecule with intricate structure and conformational dynamics that pose challenges for three-dimensional visualization. Toward the end of the book -- bringing us to the present time -- molecular structures with near-atomic resolution are presented, and a novel type of computational analysis, manifold embedding, is introduced. Single-particle cryo-EM is currently revolutionizing structural biology, presenting a powerful alternative to X-ray crystallography as a means to solve the structure of biological macromolecules. The book presents in one place a number of articles containing key advances in mathematical and computational methods leading up to the present time. Secondly, the development of the technique over the years is reflected by ever-expanding discoveries in the field of ribosome structure and function. Thirdly, as all histories of ideas, the history of concepts pertaining to this new method of visualization is fascinating all in itself.







Advances in Structural Biology


Book Description

The present volume continues the trend established in previous volumes in this series on Advances in Structural Biology. As in the past, diverse topics of current importance relevant to the theme of the series are included in the fourth volume.




Structural Biology in Drug Discovery


Book Description

With the most comprehensive and up-to-date overview of structure-based drug discovery covering both experimental and computational approaches, Structural Biology in Drug Discovery: Methods, Techniques, and Practices describes principles, methods, applications, and emerging paradigms of structural biology as a tool for more efficient drug development. Coverage includes successful examples, academic and industry insights, novel concepts, and advances in a rapidly evolving field. The combined chapters, by authors writing from the frontlines of structural biology and drug discovery, give readers a valuable reference and resource that: Presents the benefits, limitations, and potentiality of major techniques in the field such as X-ray crystallography, NMR, neutron crystallography, cryo-EM, mass spectrometry and other biophysical techniques, and computational structural biology Includes detailed chapters on druggability, allostery, complementary use of thermodynamic and kinetic information, and powerful approaches such as structural chemogenomics and fragment-based drug design Emphasizes the need for the in-depth biophysical characterization of protein targets as well as of therapeutic proteins, and for a thorough quality assessment of experimental structures Illustrates advances in the field of established therapeutic targets like kinases, serine proteinases, GPCRs, and epigenetic proteins, and of more challenging ones like protein-protein interactions and intrinsically disordered proteins




Correlative Imaging


Book Description

Brings a fresh point of view to the current state of correlative imaging and the future of the field This book provides contributions from international experts on correlative imaging, describing their vision of future developments in the field based on where it is today. Starting with a brief historical overview of how the field evolved, it presents the latest developments in microscopy that facilitate the correlative workflow. It also discusses the need for an ideal correlative probe, applications in proteomic and elemental analysis, interpretation methods, and how correlative imaging can incorporate force microscopy, soft x-ray tomography, and volume electron microscopy techniques. Work on placing individual molecules within cells is also featured. Correlative Imaging: Focusing on the Future offers in-depth chapters on: correlative imaging from an LM perspective; the importance of sample processing for correlative imaging; correlative light and volume EM; correlation with scanning probe microscopies; and integrated microscopy. It looks at: cryo-correlative microscopy; correlative cryo soft X-ray imaging; and array tomography. Hydrated-state correlative imaging in vacuo, correlating data from different imaging modalities, and big data in correlative imaging are also considered. Brings a fresh view to one of the hottest topics within the imaging community: the correlative imaging field Discusses current research and offers expert thoughts on the field’s future developments Presented by internationally-recognized editors and contributors with extensive experience in research and applications Of interest to scientists working in the fields of imaging, structural biology, cell biology, developmental biology, neurobiology, cancer biology, infection and immunity, biomaterials and biomedicine Part of the Wiley–Royal Microscopical Society series Correlative Imaging: Focusing on the Future will appeal to those working in the expanding field of the biosciences, correlative microscopy and related microscopic areas. It will also benefit graduate students working in microscopy, as well as anyone working in the microscopy imaging field in biomedical research.




The Resolution Revolution: Recent Advances In cryoEM


Book Description

cryoEM, a new volume in the Methods in Enzymology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. This volume covers research methods and new developments in recording images, the creation, evaluation and validation of 3D maps from the images, model building into maps and refinement of the resulting atomic structures, and applications of essentially single particle methods to helical structures and to sub-tomogram averaging. - Continues the legacy of this premier serial with quality chapters authored by leaders in the field - Covers research methods that determine the structures of biological molecules, a vital step for understanding their function - Contains the technical developments underpinning the advances of cryoEM and captures the exciting insights that have resulted




cryoEM


Book Description

This volume details the most up-to-date cryo-EM techniques from leading researchers. Chapters are organized into four parts with emphasis on electron cryotomography, single particle analysis, and the crystal based cryo-EM methods of 2D electron crystallography, and MicroED for the study of 3D crystals. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, application details for both the expert and non-expert reader, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, CryoEM: Methods and Protocols aims to serve as an excellent resource on cryo-EM and can serve as the foundation for new researchers to this growing field in structural biology.




Three-Dimensional Electron Microscopy of Macromolecular Assemblies


Book Description

Three-Dimensional Electron Microscopy of Macromolecular Assemblies is the first systematic introduction to single-particle methods of reconstruction. It covers correlation alignment, classification, 3D reconstruction, restoration, and interpretation of the resulting 3D images in macromolecular assemblies. It will be an indispensable resource for newcomers to the field and for all using or adopting these methods.Key Features* Presents methods that offer an alternative to crystallographic techniques for molecules that cannot be crystallized* Describes methods that have been instrumental in exploring the three-dimensional structure of* the nuclear pore complex* the calcium release channel;* the ribosome* chaperonins




Advances in Protein Molecular and Structural Biology Methods


Book Description

Advances in Protein Molecular and Structural Biology Methods offers a complete overview of the latest tools and methods applicable to the study of proteins at the molecular and structural level. The book begins with sections exploring tools to optimize recombinant protein expression and biophysical techniques such as fluorescence spectroscopy, NMR, mass spectrometry, cryo-electron microscopy, and X-ray crystallography. It then moves towards computational approaches, considering structural bioinformatics, molecular dynamics simulations, and deep machine learning technologies. The book also covers methods applied to intrinsically disordered proteins (IDPs)followed by chapters on protein interaction networks, protein function, and protein design and engineering. It provides researchers with an extensive toolkit of methods and techniques to draw from when conducting their own experimental work, taking them from foundational concepts to practical application. - Presents a thorough overview of the latest and emerging methods and technologies for protein study - Explores biophysical techniques, including nuclear magnetic resonance, X-ray crystallography, and cryo-electron microscopy - Includes computational and machine learning methods - Features a section dedicated to tools and techniques specific to studying intrinsically disordered proteins




Scanning Electron Microscopy for the Life Sciences


Book Description

A guide to modern scanning electron microscopy instrumentation, methodology and techniques, highlighting novel applications to cell and molecular biology.