Cryogenic Two-Phase Flow


Book Description

Cryogenic systems that involve two-phase (vapor-liquid) flows are widely used in industries such as aerospace, metallurgy, power engineering, and food production, as well as in high energy physics research. The purpose of this book is to describe characteristic features of cryogenic systems involving two-phase flow, create mathematical models of these systems, and then show how the models may be used to develop optimal designs for practical cryogenic systems. The models are examined using analytical and numerical techniques, and then the predictions are compared to experimental measurements. Since transient phenomena can produce severe and unexpected effects in cryogenic systems, the authors pay particular attention to this important topic. Examples in the book are drawn from cryogenic fluid transport, gasification, and the stabilization of superconducting magnets. Much of this work is related to the development of large Russian systems in the areas of space technology, energy research, and particle physics. This book, the first devoted solely to cryogenic two-phase flow, will be a valuable reference for cryogenic engineers and scientists.







Low Temperature and Cryogenic Refrigeration


Book Description

Refrigeration plays a prominent role in our everyday lives, and cryogenics plays a major role in medical science, space technology and the cooling of low-temperature electronics. This volume contains chapters on basic refrigeration systems, non-compression refrigeration and cooling, and topics related to global environmental issues, alternative refrigerants, optimum refrigerant selection, cost-quality optimization of refrigerants, advanced thermodynamics of reverse-cycle machines, applications in medicine, cryogenics, heat pipes, gas-solid absorption refrigeration, multisalt resorption heat pumps, cryocoolers, thermoacoustic refrigeration, cryogenic heat transfer and enhancement and other topics covering theory, design, and applications, such as pulse tube refrigeration, which is the most efficient of all cryocoolers and can be used in space missions.




Advances in Cryogenic Engineering


Book Description

The University of Colorado and the National Bureau of Standards have once again served as hosts for the Cryogenic Engineering Conference in Boulder, Colorado. In presenting the papers of this twelfth annual meeting, the 1966 Cryogenic Engineering Conference Committee has again recognized the excellent cooperation which has existed between these two organizations over the past decade with regard to both cryogenic research and conference activity. This cooperation was demonstrated not only at the 1966 Cryogenic Engineering Conference but also at the International Institute of Refrigeration, Commission I Meeting, which was also hosted by these two organizations immediately following the Cryogenic Engineering Conference. These two meetings have provided attendees with one of the most comprehensive coverages of cryogenic topics that has ever been presented at one location. Emphasis on major international advances in helium technology at the International Institute of Refrigeration, Commission I Meeting has been possible largely through the National Science Foundation Grant GK 1116 to the University of Colorado. The Cryogenic Engineering Conference Committee gratefully acknowledges this support because of its valuable international contribution to the Cryogenic Engineering Conference. As in the past, the Cryogenic Engineering Conference Committee is grateful for the continued assistance of all the dedicated workers in the cryogenic field who have contributed their time reviewing the preliminary papers for the program and the final manuscripts for this volume.




Two-Phase Flow, Boiling, and Condensation


Book Description

This text is an introduction to gas-liquid two-phase flow, boiling and condensation for graduate students, professionals, and researchers in mechanical, nuclear, and chemical engineering. The book provides a balanced coverage of two-phase flow and phase change fundamentals, well-established art and science dealing with conventional systems, and the rapidly developing areas of microchannel flow and heat transfer. It is based on the author's more than 15 years of teaching experience. Instructors teaching multiphase flow have had to rely on a multitude of books and reference materials. This book remedies that problem by covering all the topics that are essential for a graduate first course. Among the important areas that are discussed in the book, and are not adequately covered by virtually all the available textbooks, are: two-phase flow model conservation equations and their numerical solution; condensation with and without noncondensables; and two-phase flow, boiling, and condensation in mini and microchannels.







Advances in Cryogenic Engineering


Book Description




Cryogenic Heat Transfer


Book Description

Presents applied heat transfer principles in the range of extremely low temperatures. The specific features of heat transfer at cryogenic temperatures, such as variable properties, near critical convection, and Kapitza resistance, are described. This book includes many example problems, in each section, that help to illustrate the applications of t




Advances in Cryogenic Engineering


Book Description

Proceedings of the 1991 Cryogenic Engineering Conference held in Huntsville, Alabama, June 11-14, 1991.




Advances in Cryogenic Engineering


Book Description

In recent years, the technology of cryogenic comminution has been widely applied in the field of chemical engineering, food making, medicine production, and particularly in recycling of waste materials. Because of the increasing pollution of waste tires and the shortage of raw rubber resource, the recycling process for waste rubber products has become important and commercially viable. This technology has shown a great number of advantages such as causing no environmental pollution, requiring low energy consumption and producing high quality products. Hence, the normal crusher which was used to reclaim materials, such as waste tires, nylon, plastic and many polymer materials at atmospheric 12 temperature is being replaced by a cryogenic crusher. • In the cryogenic crusher, the property of the milled material is usually very sensitive to temperature change. When a crusher is in operation, it will generate a great deal of heat that causes the material temperature increased. Once the temperature increases over the vitrification temperature, the material property will change and lose the brittle behavior causing the energy consumption to rise sharply. Consequently, the comminution process cannot be continued. Therefore, it is believed that the cryogenic crusher is the most critical component in the cryogenic comminution system. The research on the temperature increase and energy consumption in the cryogenic crusher is not only to reduce the energy consumption of the crasher, but also to reduce the energy consumption of the cryogenic system.