Cryptography In The Information Society


Book Description

This textbook describes the main techniques and features of contemporary cryptography, but does so using secondary school mathematics so that the concepts discussed can be understood by non-mathematicians. The topics addressed include block ciphers, stream ciphers, public key encryption, digital signatures, cryptographic protocols, elliptic curve cryptography, theoretical security, blockchain and cryptocurrencies, issues concerning random numbers, and steganography. The key results discussed in each chapter are mathematically proven, and the methods are described in sufficient detail to enable their computational implementation. Exercises are provided.




Cryptography's Role in Securing the Information Society


Book Description

For every opportunity presented by the information age, there is an opening to invade the privacy and threaten the security of the nation, U.S. businesses, and citizens in their private lives. The more information that is transmitted in computer-readable form, the more vulnerable we become to automated spying. It's been estimated that some 10 billion words of computer-readable data can be searched for as little as $1. Rival companies can glean proprietary secrets . . . anti-U.S. terrorists can research targets . . . network hackers can do anything from charging purchases on someone else's credit card to accessing military installations. With patience and persistence, numerous pieces of data can be assembled into a revealing mosaic. Cryptography's Role in Securing the Information Society addresses the urgent need for a strong national policy on cryptography that promotes and encourages the widespread use of this powerful tool for protecting of the information interests of individuals, businesses, and the nation as a whole, while respecting legitimate national needs of law enforcement and intelligence for national security and foreign policy purposes. This book presents a comprehensive examination of cryptographyâ€"the representation of messages in codeâ€"and its transformation from a national security tool to a key component of the global information superhighway. The committee enlarges the scope of policy options and offers specific conclusions and recommendations for decision makers. Cryptography's Role in Securing the Information Society explores how all of us are affected by information security issues: private companies and businesses; law enforcement and other agencies; people in their private lives. This volume takes a realistic look at what cryptography can and cannot do and how its development has been shaped by the forces of supply and demand. How can a business ensure that employees use encryption to protect proprietary data but not to conceal illegal actions? Is encryption of voice traffic a serious threat to legitimate law enforcement wiretaps? What is the systemic threat to the nation's information infrastructure? These and other thought-provoking questions are explored. Cryptography's Role in Securing the Information Society provides a detailed review of the Escrowed Encryption Standard (known informally as the Clipper chip proposal), a federal cryptography standard for telephony promulgated in 1994 that raised nationwide controversy over its "Big Brother" implications. The committee examines the strategy of export control over cryptography: although this tool has been used for years in support of national security, it is increasingly criticized by the vendors who are subject to federal export regulation. The book also examines other less well known but nevertheless critical issues in national cryptography policy such as digital telephony and the interplay between international and national issues. The themes of Cryptography's Role in Securing the Information Society are illustrated throughout with many examplesâ€"some alarming and all instructiveâ€"from the worlds of government and business as well as the international network of hackers. This book will be of critical importance to everyone concerned about electronic security: policymakers, regulators, attorneys, security officials, law enforcement agents, business leaders, information managers, program developers, privacy advocates, and Internet users.




Cryptography's Role in Securing the Information Society


Book Description

For every opportunity presented by the information age, there is an opening to invade the privacy and threaten the security of the nation, U.S. businesses, and citizens in their private lives. The more information that is transmitted in computer-readable form, the more vulnerable we become to automated spying. It's been estimated that some 10 billion words of computer-readable data can be searched for as little as $1. Rival companies can glean proprietary secrets . . . anti-U.S. terrorists can research targets . . . network hackers can do anything from charging purchases on someone else's credit card to accessing military installations. With patience and persistence, numerous pieces of data can be assembled into a revealing mosaic. Cryptography's Role in Securing the Information Society addresses the urgent need for a strong national policy on cryptography that promotes and encourages the widespread use of this powerful tool for protecting of the information interests of individuals, businesses, and the nation as a whole, while respecting legitimate national needs of law enforcement and intelligence for national security and foreign policy purposes. This book presents a comprehensive examination of cryptographyâ€"the representation of messages in codeâ€"and its transformation from a national security tool to a key component of the global information superhighway. The committee enlarges the scope of policy options and offers specific conclusions and recommendations for decision makers. Cryptography's Role in Securing the Information Society explores how all of us are affected by information security issues: private companies and businesses; law enforcement and other agencies; people in their private lives. This volume takes a realistic look at what cryptography can and cannot do and how its development has been shaped by the forces of supply and demand. How can a business ensure that employees use encryption to protect proprietary data but not to conceal illegal actions? Is encryption of voice traffic a serious threat to legitimate law enforcement wiretaps? What is the systemic threat to the nation's information infrastructure? These and other thought-provoking questions are explored. Cryptography's Role in Securing the Information Society provides a detailed review of the Escrowed Encryption Standard (known informally as the Clipper chip proposal), a federal cryptography standard for telephony promulgated in 1994 that raised nationwide controversy over its "Big Brother" implications. The committee examines the strategy of export control over cryptography: although this tool has been used for years in support of national security, it is increasingly criticized by the vendors who are subject to federal export regulation. The book also examines other less well known but nevertheless critical issues in national cryptography policy such as digital telephony and the interplay between international and national issues. The themes of Cryptography's Role in Securing the Information Society are illustrated throughout with many examplesâ€"some alarming and all instructiveâ€"from the worlds of government and business as well as the international network of hackers. This book will be of critical importance to everyone concerned about electronic security: policymakers, regulators, attorneys, security officials, law enforcement agents, business leaders, information managers, program developers, privacy advocates, and Internet users.




The Crypto Controversy:A Key Conflict in the Information Society


Book Description

Cryptography is essential for information security and electronic commerce, yet it can also be abused by criminals to thwart police wiretaps and computer searches. How should governments address this conflict of interests? Will they require people to deposit crypto keys with a `trusted' agent? Will governments outlaw cryptography that does not provide for law-enforcement access? This is not yet another study of the crypto controversy to conclude that this or that interest is paramount. This is not a study commissioned by a government, nor is it a report that campaigns on the electronic frontier. The Crypto Controversy is neither a cryptography handbook nor a book drenched in legal jargon. The Crypto Controversy pays attention to the reasoning of both privacy activists and law-enforcement agencies, to the particulars of technology as well as of law, to `solutions' offered both by cryptographers and by governments. Koops proposes a method to balance the conflicting interests and applies this to the Dutch situation, explaining both technical and legal issues for anyone interested in the subject.




Cryptography, Information Theory, and Error-Correction


Book Description

Discover the first unified treatment of today's most essential information technologies— Compressing, Encrypting, and Encoding With identity theft, cybercrime, and digital file sharing proliferating in today's wired world, providing safe and accurate information transfers has become a paramount concern. The issues and problems raised in this endeavor are encompassed within three disciplines: cryptography, information theory, and error-correction. As technology continues to develop, these fields have converged at a practical level, increasing the need for a unified treatment of these three cornerstones of the information age. Stressing the interconnections of the disciplines, Cryptography, Information Theory, and Error-Correction offers a complete, yet accessible account of the technologies shaping the 21st century. This book contains the most up-to-date, detailed, and balanced treatment available on these subjects. The authors draw on their experience both in the classroom and in industry, giving the book's material and presentation a unique real-world orientation. With its reader-friendly style and interdisciplinary emphasis, Cryptography, Information Theory, and Error-Correction serves as both an admirable teaching text and a tool for self-learning. The chapter structure allows for anyone with a high school mathematics education to gain a strong conceptual understanding, and provides higher-level students with more mathematically advanced topics. The authors clearly map out paths through the book for readers of all levels to maximize their learning. This book: Is suitable for courses in cryptography, information theory, or error-correction as well as courses discussing all three areas Provides over 300 example problems with solutions Presents new and exciting algorithms adopted by industry Discusses potential applications in cell biology Details a new characterization of perfect secrecy Features in-depth coverage of linear feedback shift registers (LFSR), a staple of modern computing Follows a layered approach to facilitate discussion, with summaries followed by more detailed explanations Provides a new perspective on the RSA algorithm Cryptography, Information Theory, and Error-Correction is an excellent in-depth text for both graduate and undergraduate students of mathematics, computer science, and engineering. It is also an authoritative overview for IT professionals, statisticians, mathematicians, computer scientists, electrical engineers, entrepreneurs, and the generally curious.




Contemporary Cryptology


Book Description

The field of cryptography has experienced an unprecedented development in the past decade and the contributors to this book have been in the forefront of these developments. In an information-intensive society, it is essential to devise means to accomplish, with information alone, every function that it has been possible to achieve in the past with documents, personal control, and legal protocols (secrecy, signatures, witnessing, dating, certification of receipt and/or origination). This volume focuses on all these needs, covering all aspects of the science of information integrity, with an emphasis on the cryptographic elements of the subject. In addition to being an introductory guide and survey of all the latest developments, this book provides the engineer and scientist with algorithms, protocols, and applications. Of interest to computer scientists, communications engineers, data management specialists, cryptographers, mathematicians, security specialists, network engineers.




Architects of the Information Society


Book Description

The Massachusetts Institute of Technology's Laboratory for Computer Science (LCS) hasbeen responsible for some of the most significant technological achievements of the past fewdecades. Much of the hardware and software driving the information revolution has been, andcontinues to be, created at LCS. Anyone who sends and receives email, communicates with colleaguesthrough a LAN, surfs the Web, or makes decisions using a spreadsheet is benefiting from thecreativity of LCS members.LCS is an interdepartmental laboratory that brings together faculty,researchers, and students in a broad program of study, research, and experimentation. Theirprincipal goal is to pursue innovations in information technology that will improve people's lives.LCS members have been instrumental in the development of ARPAnet, the Internet, the Web, Ethernet,time-shared computers, UNIX, RSA encryption, the X Windows system, NuBus, and many othertechnologies.This book, published in celebration of LCS's thirty-fifth anniversary, chronicles itshistory, achievements, and continued importance to computer science. The essays are complemented byhistorical photographs.




Advances in Cryptology - CRYPTO '87


Book Description

Zero-knowledge interactive proofsystems are a new technique which can be used as a cryptographic tool for designing provably secure protocols. Goldwasser, Micali, and Rackoff originally suggested this technique for controlling the knowledge released in an interactive proof of membership in a language, and for classification of languages [19]. In this approach, knowledge is defined in terms of complexity to convey knowledge if it gives a computational advantage to the receiver, theory, and a message is said for example by giving him the result of an intractable computation. The formal model of interacting machines is described in [19, 15, 171. A proof-system (for a language L) is an interactive protocol by which one user, the prover, attempts to convince another user, the verifier, that a given input x is in L. We assume that the verifier is a probabilistic machine which is limited to expected polynomial-time computation, while the prover is an unlimited probabilistic machine. (In cryptographic applications the prover has some trapdoor information, or knows the cleartext of a publicly known ciphertext) A correct proof-system must have the following properties: If XE L, the prover will convince the verifier to accept the pmf with very high probability. If XP L no prover, no matter what program it follows, is able to convince the verifier to accept the proof, except with vanishingly small probability.




Cryptography: A Very Short Introduction


Book Description

This book is a clear and informative introduction to cryptography and data protection - subjects of considerable social and political importance. It explains what algorithms do, how they are used, the risks associated with using them, and why governments should be concerned. Important areas are highlighted, such as Stream Ciphers, block ciphers, public key algorithms, digital signatures, and applications such as e-commerce. This book highlights the explosive impact of cryptography on modern society, with, for example, the evolution of the internet and the introduction of more sophisticated banking methods. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.




Cryptography


Book Description

Cryptography has proven to be one of the most contentious areas in modern society. For some it protects the rights of individuals to privacy and security, while for others it puts up barriers against the protection of our society. This book aims to develop a deep understanding of cryptography, and provide a way of understanding how privacy, identity provision and integrity can be enhanced with the usage of encryption. The book has many novel features including:full provision of Web-based material on almost every topic coveredprovision of additional on-line material, such as videos, source code, and labscoverage of emerging areas such as Blockchain, Light-weight Cryptography and Zero-knowledge Proofs (ZKPs)Key areas covered include:Fundamentals of EncryptionPublic Key EncryptionSymmetric Key EncryptionHashing MethodsKey Exchange MethodsDigital Certificates and AuthenticationTunnelingCrypto CrackingLight-weight CryptographyBlockchainZero-knowledge ProofsThis book provides extensive support through the associated website of: http://asecuritysite.com/encryption