Pharmaceutical Salts and Co-crystals


Book Description

This book covers the hot topic of pharmaceutical salts and co-crystals focusing on the following essential aspects: an overview of fundamental aspects on salts and co-crystals, racemic resolution via diastereomer separation, optimization of relevant physico-chemical parameters, and strengthening of intellectual property.




Pharmaceutical Salts and Co-crystals


Book Description

From crystal structure prediction to totally empirical screening, the quest for new crystal forms has become one of the most challenging issues in the solid state science and particularly in the pharmaceutical world. In this context, multi-component crystalline materials like co-crystals have received renewed interest as they offer the prospect of optimized physical properties. As illustrated in this first book_ entirely dedicated to this emerging class of pharmaceutical compounds_ the outcome of such endeavours into crystal engineering have demonstrated clear impacts on production, marketing and intellectual property protection of active pharmaceutical ingredients (APIs). Indeed, co-crystallization influences relevant physico-chemical parameters (such as solubility, dissolution rate, chemical stability, melting point, hygroscopicity, à) and often offers solids with properties superior to those of the free drug. Combining both reports of the latest research and comprehensive overviews of basic principles, with contributions from selected experts in both academia and industry, this unique book is an essential reference, ideal for pharmaceutical development scientists and graduate students in pharmaceutical science.







Early Drug Development, 2 Volume Set


Book Description

This one-stop reference systematically covers key aspects in early drug development that are directly relevant to the discovery phase and are required for first-in-human studies. Its broad scope brings together critical knowledge from many disciplines, ranging from process technology to pharmacology to intellectual property issues. After introducing the overall early development workflow, the critical steps of early drug development are described in a sequential and enabling order: the availability of the drug substance and that of the drug product, the prediction of pharmacokinetics and -dynamics, as well as that of drug safety. The final section focuses on intellectual property aspects during early clinical development. The emphasis throughout is on recent case studies to exemplify salient points, resulting in an abundance of practice-oriented information that is usually not available from other sources. Aimed at medicinal chemists in industry as well as academia, this invaluable reference enables readers to understand and navigate the challenges in developing clinical candidate molecules that can be successfully used in phase one clinical trials.




Multi-Component Crystals


Book Description

In this volume, contributions covering the theoretical and practical aspects of multicomponent crystals provide a timely and contemporary overview of the state-of-the art of this vital aspect of crystal engineering/materials science. With a solid foundation in fundamentals, multi-component crystals can be formed, for example, to enhance pharmaceutical properties of drugs, for the specific control of optical responses to external stimuli and to assemble molecules to allow chemical reactions that are generally intractable following conventional methods. Contents Pharmaceutical co-crystals: crystal engineering and applications Pharmaceutical multi-component crystals: improving the efficacy of anti-tuberculous agents Qualitative and quantitative crystal engineering of multi-functional co-crystals Control of photochromism in N-salicylideneaniline by crystal engineering Quinoline derivatives for multi-component crystals: principles and applications N-oxides in multi-component crystals and in bottom-up synthesis and applications Multi-component crystals and non-ambient conditions Co-crystals for solid-state reactivity and thermal expansion Solution co-crystallisation and its applications The salt-co-crystal continuum in halogen-bonded systems Large horizontal displacements of benzene-benzene stacking interactions in co-crystals Simultaneous halogen and hydrogen bonding to carbonyl and thiocarbonylfunctionality Crystal chemistry of the isomeric N,N’-bis(pyridin-n-ylmethyl)-ethanediamides, n = 2, 3 or 4 Solute・solvent interactions mediated by main group element (lone-pair)・・・π(aryl) interactions




Co-crystals


Book Description

Multi-component crystalline systems or co-crystals have received tremendous attention from academia and industry alike in the past decade. Applications of co-crystals are varied and are likely to positively impact a wide range of industries dealing with molecular solids. Co-crystallization has been used to improve the properties and performance of materials from pharmaceuticals to energetic materials, as well as for separation of compounds. This book combines co-crystal applications of commercial and practical interest from diverse fields in to a single volume. It also examines effective structural design of co-crystals, and provides insights into practical synthesis and characterization techniques. Providing a useful resource for postgraduate students new to applied co-crystal research and crystal engineering, it will also be of interest to established researchers in academia or industry.




Solid State Development and Processing of Pharmaceutical Molecules


Book Description

Solid State Development and Processing of Pharmaceutical Molecules A guide to the lastest industry principles for optimizing the production of solid state active pharmaceutical ingredients Solid State Development and Processing of Pharmaceutical Molecules is an authoritative guide that covers the entire pharmaceutical value chain. The authors—noted experts on the topic—examine the importance of the solid state form of chemical and biological drugs and review the development, production, quality control, formulation, and stability of medicines. The book explores the most recent trends in the digitization and automation of the pharmaceutical production processes that reflect the need for consistent high quality. It also includes information on relevant regulatory and intellectual property considerations. This resource is aimed at professionals in the pharmaceutical industry and offers an in-depth examination of the commercially relevant issues facing developers, producers and distributors of drug substances. This important book: Provides a guide for the effective development of solid drug forms Compares different characterization methods for solid state APIs Offers a resource for understanding efficient production methods for solid state forms of chemical and biological drugs Includes information on automation, process control, and machine learning as an integral part of the development and production workflows Covers in detail the regulatory and quality control aspects of drug development Written for medicinal chemists, pharmaceutical industry professionals, pharma engineers, solid state chemists, chemical engineers, Solid State Development and Processing of Pharmaceutical Molecules reviews information on the solid state of active pharmaceutical ingredients for their efficient development and production.




Handbook of Pharmaceutical Salts Properties, Selection, and Use


Book Description

This comprehensive up-to-date guide and information source is an instructive companion for all scientists involved in research and development of drugs and, in particular, of pharmaceutical dosage forms. The editors have taken care to address every conceivable aspect of the preparation of pharmaceutical salts and present the necessary theoretical foundations as well as a wealth of detailed practical experience in the choice of pharmaceutically active salts. Altogether, the contributions reflect the multidisciplinary nature of the science involved in selection of suitable salt forms for new drug products.




Crystal Engineering of Novel Pharmaceutical Forms


Book Description

ABSTRACT: In the context of pharmaceutical development, it is abundantly clear that there is a need for greater understanding and control of crystalline phases. The field of crystal engineering is poised to address such issues and has matured into a paradigm for the supramolecular synthesis of new compounds with desired properties. Crystal structures are unpredictable by nature, however, the interactions that lead to crystal formation are becoming much more predictable. By means of model compound studies, the delineation of the hierarchy of hydrogen bonding between complementary functional groups or supramolecular heterosynthons can be accomplished. Competitive co-crystallization studies along with data extracted from the Cambridge Structural Database (CSD) can be utilized in understanding the reliability of supramolecular heterosynthons without the need for endless co-crystallization experiments. In effect, this ability to understand supramolecular heterosynthons can allow crystal engineers to rationally design co-crystals with a high rate of success. It has been suggested that pharmaceutical co-crystals could play a significant part in the future of API formulation since in principle they will outnumber pharmaceutical salts, polymorphs and solvates combined. The focus of this thesis is the understanding of the primary amide functional group and its hydrogen bonding capabilities; as well as the synthesis of model compounds in order to develop a blueprint for the design of pharmaceutical co-crystals using APIs that contain a primary amide functional group.




Supramolecular Synthons in Crystal Engineering of Pharmaceutical Properties


Book Description

This comprehensive resource skillfully consolidates crystal engineering, the design of organic solids, and supramolecular synthons (i.e., structural hydrogen bond units) to achieve desired pharmaceutical properties, including solubility, dissolution, bioavailability, permeability, particle size, tableting, hydration, and mechanical strength. Covering 30 years of crystal engineering developments and pharmaceutical applications, this book will be a single and complete resource for supramolecular and structural chemists, the crystal engineering community, pharmaceutical scientists, and industrial researchers. Key Features Covers the fundamentals of crystal engineering and supramolecular synthons. Details the challenges of low solubility and low permeability facing oral drug formulations. Explains how heterosynthons provide a rational approach to address and implement solutions. Provides case studies from academic and industrial labs to walk the reader through the actual steps. Explores developments in the scale up and manufacture of crystal forms in pharmaceutical industry.