Handbook of Crystal Growth


Book Description




Handbook of Crystal Growth


Book Description

Volume IAHandbook of Crystal Growth, 2nd Edition (Fundamentals: Thermodynamics and Kinetics) Volume IA addresses the present status of crystal growth science, and provides scientific tools for the following volumes: Volume II (Bulk Crystal Growth) and III (Thin Film Growth and Epitaxy). Volume IA highlights thermodynamics and kinetics. After historical introduction of the crystal growth, phase equilibria, defect thermodynamics, stoichiometry, and shape of crystal and structure of melt are described. Then, the most fundamental and basic aspects of crystal growth are presented, along with the theories of nucleation and growth kinetics. In addition, the simulations of crystal growth by Monte Carlo, ab initio-based approach and colloidal assembly are thoroughly investigated. Volume IBHandbook of Crystal Growth, 2nd Edition (Fundamentals: Transport and Stability) Volume IB discusses pattern formation, a typical problem in crystal growth. In addition, an introduction to morphological stability is given and the phase-field model is explained with comparison to experiments. The field of nanocrystal growth is rapidly expanding and here the growth from vapor is presented as an example. For the advancement of life science, the crystal growth of protein and other biological molecules is indispensable and biological crystallization in nature gives many hints for their crystal growth. Another subject discussed is pharmaceutical crystal growth. To understand the crystal growth, in situ observation is extremely powerful. The observation techniques are demonstrated. Volume IA - Explores phase equilibria, defect thermodynamics of Si, stoichiometry of oxides and atomistic structure of melt and alloys - Explains basic ideas to understand crystal growth, equilibrium shape of crystal, rough-smooth transition of step and surface, nucleation and growth mechanisms - Focuses on simulation of crystal growth by classical Monte Carlo, ab-initio based quantum mechanical approach, kinetic Monte Carlo and phase field model. Controlled colloidal assembly is presented as an experimental model for crystal growth. Volume IIB - Describes morphological stability theory and phase-field model and comparison to experiments of dendritic growth - Presents nanocrystal growth in vapor as well as protein crystal growth and biological crystallization - Interprets mass production of pharmaceutical crystals to be understood as ordinary crystal growth and explains crystallization of chiral molecules - Demonstrates in situ observation of crystal growth in vapor, solution and melt on the ground and in space




Handbook of Industrial Crystallization


Book Description

Crystallization is an important separation and purification process used in industries ranging from bulk commodity chemicals to specialty chemicals and pharmaceuticals. In recent years, a number of environmental applications have also come to rely on crystallization in waste treatment and recycling processes.The authors provide an introduction to the field of newcomers and a reference to those involved in the various aspects of industrial crystallization. It is a complete volume covering all aspects of industrial crystallization, including material related to both fundamentals and applications. This new edition presents detailed material on crystallization of biomolecules, precipitation, impurity-crystal interactions, solubility, and design.Provides an ideal introduction for industrial crystallization newcomers Serves as a worthwhile reference to anyone involved in the fieldCovers all aspects of industrial crystallization in a single, complete volume




Springer Handbook of Crystal Growth


Book Description

Over the years, many successful attempts have been chapters in this part describe the well-known processes made to describe the art and science of crystal growth, such as Czochralski, Kyropoulos, Bridgman, and o- and many review articles, monographs, symposium v- ing zone, and focus speci cally on recent advances in umes, and handbooks have been published to present improving these methodologies such as application of comprehensive reviews of the advances made in this magnetic elds, orientation of the growth axis, intro- eld. These publications are testament to the grow- duction of a pedestal, and shaped growth. They also ing interest in both bulk and thin- lm crystals because cover a wide range of materials from silicon and III–V of their electronic, optical, mechanical, microstructural, compounds to oxides and uorides. and other properties, and their diverse scienti c and The third part, Part C of the book, focuses on - technological applications. Indeed, most modern ad- lution growth. The various aspects of hydrothermal vances in semiconductor and optical devices would growth are discussed in two chapters, while three other not have been possible without the development of chapters present an overview of the nonlinear and laser many elemental, binary, ternary, and other compound crystals, KTP and KDP. The knowledge on the effect of crystals of varying properties and large sizes. The gravity on solution growth is presented through a c- literature devoted to basic understanding of growth parison of growth on Earth versus in a microgravity mechanisms, defect formation, and growth processes environment.




Crystal Growth in Gels


Book Description

First book ever printed on growing crystals in a gel medium provides thorough descriptions of the procedure, its history and future potential. "Concise and readable."—Science. 42 illus. 1970 edition.




Encyclopedia of Geochemistry


Book Description

This is a complete and authoritative reference text on an evolving field. Over 200 international scientists have written over 340 separate topics on different aspects of geochemistry including organics, trace elements, isotopes, high and low temperature geochemistry, and ore deposits, to name just a few.




Water Relationships in Foods


Book Description

This book was developed from the papers presented at a symposium on "Water Relationships in Foods," which was held from April 10-14, 1989 at the 197th National Meeting of the American Chemical Society in Dallas, Texas, under the auspices of the Agricultural and Food Chemistry Division of ACS. The editors of this book organized the symposium to bring tagether an es teemed group of internationally respected experts, currently active in the field of water relationships in foods, to discuss recent advances in the 1980's and future trends for the 1990's. It was the hope of all these con tributors that this ACS symposium would become a memorable keystone above the foundation underlying the field of "water in foods. " This strong foundation has been constructed in large part from earlier technical conferences and books such as the four milestone International Symposia on the Properties of Water (ISOPOW I-IV), the recent IFT BasicSymposium on "Water Activity" and Penang meeting on Food Preservation by Maisture Control, as well as the key fundamental contributions from the classic 1980 ACS Symposium Series #127 on Water in Polymers, and from Felix Franks' famous seven-volume Comprehensive Treatise on Water plus five subsequent volumes of the ongoing Water Science Reviews. The objective of the 1989 ACS symposiumwas to build on this foun dation by emphasizing the most recent and maj or advanc.




Introduction to Crystal Growth


Book Description

Introduction to Crystal Growth: Principles and Practice teaches readers about crystals and their origins. It offers a historical perspective of the subject and includes background information whenever possible.The first section of this introductory book takes readers through the historical development and motivation of the field of crystal growth.




New Topics in Crystal Growth Research


Book Description

Experimental and theoretical aspects of crystal growth and its applications, e.g. in devices, are within the scope of these new books . Experimental and theoretical contributions are included in the following fields: theory of nucleation and growth, molecular kinetics and transport phenomena, crystallisation in viscous media such as polymers and glasses; crystal growth of metals, minerals, semiconductors, superconductors, magnetics, inorganic, organic and biological substances in bulk or as thin films; molecular beam epitaxy, chemical vapour deposition, growth of III-V and II-VI and other semiconductors; characterisation of single crystals by physical and chemical methods; apparatus, instrumentation and techniques for crystal growth, and purification methods; multi-layer heterostructures and their characterisation with an emphasis on crystal growth and epitaxial aspects of electronic materials.