Crystal Structure of Electroceramics


Book Description

This book is a printed edition of the Special Issue "Crystal Structure of Electroceramics" that was published in Crystals




Fundamentals of Electroceramics


Book Description

The first textbook to provide in-depth treatment of electroceramics with emphasis on applications in microelectronics, magneto-electronics, spintronics, energy storage and harvesting, sensors and detectors, magnetics, and in electro-optics and acousto-optics Electroceramics is a class of ceramic materials used primarily for their electrical properties. This book covers the important topics relevant to this growing field and places great emphasis on devices and applications. It provides sufficient background in theory and mathematics so that readers can gain insight into phenomena that are unique to electroceramics. Each chapter has its own brief introduction with an explanation of how the said content impacts technology. Multiple examples are provided to reinforce the content as well as numerous end-of-chapter problems for students to solve and learn. The book also includes suggestions for advanced study and key words relevant to each chapter. Fundamentals of Electroceramics: Materials, Devices and Applications offers eleven chapters covering: 1.Nature and types of solid materials; 2. Processing of Materials; 3. Methods for Materials Characterization; 4. Binding Forces in Solids and Essential Elements of Crystallography; 5. Dominant Forces and Effects in Electroceramics; 6. Coupled Nonlinear Effects in Electroceramics; 7. Elements of Semiconductor; 8. Electroceramic Semiconductor Devices; 9. Electroceramics and Green Energy; 10.Electroceramic Magnetics; and 11. Electro-optics and Acousto-optics. Provides an in-depth treatment of electroceramics with the emphasis on fundamental theoretical concepts, devices, and applications with focus on non-linear dielectrics Emphasizes applications in microelectronics, magneto-electronics, spintronics, energy storage and harvesting, sensors and detectors, magnetics and in electro-optics and acousto-optics Introductory textbook for students to learn and make an impact on technology Motivates students to get interested in research on various aspects of electroceramics at undergraduate and graduate levels leading to a challenging career path. Includes examples and problem questions within every chapter that prepare students well for independent thinking and learning. Fundamentals of Electroceramics: Materials, Devices and Applications is an invaluable academic textbook that will benefit all students, professors, researchers, scientists, engineers, and teachers of ceramic engineering, electrical engineering, applied physics, materials science, and engineering.




Electroceramics


Book Description

Electroceramics, Materials, Properties, Applications, Second Edition provides a comprehensive treatment of the many aspects of ceramics and their electrical applications. The fundamentals of how electroceramics function are carefully introduced with their properties and applications also considered. Starting from elementary principles, the physical, chemical and mathematical background of the subject are discussed and wherever appropriate, a strong emphasis is placed on the relationship between microstructire and properties. The Second Edition has been fully revised and updated, building on the foundation of the earlier book to provide a concise text for all those working in the growing field of electroceramics. * fully revised and updated to include the latest technological changes and developments in the field * includes end of chapter problems and an extensive bibliography * an Invaluable text for all Materials Science students. * a useful reference for physicists, chemists and engineers involved in the area of electroceramics.




Electroceramics - Production, properties and microstructures


Book Description

Proceedings of the Symposium Held as Part of the Condensed Matter and Materials Physics Conference, on the 20-22 December 1993, at the University of Leeds. The man focus was Electroceramics - Production, properties and microstructures.




Advances and Applications in Electroceramics


Book Description

This book contains 26 papers from the Magnetoelectric Multiferroic Thin Films and Multilayers; Dielectric Ceramic Materials and Electronic Devices; Recent Developments in High-Temperature Superconductivity; and Multifunctional Oxides symposia held during the 2010 Materials Science and Technology (MS&T'10) meeting, October 17-21, 2010, Houston, Texas. Topics include: Properties; Structures; Synthesis; Characterization; Device Applications; Multiferroics and Magnetoelectrics; YBCO Pinning Methods and Properties; YBCO Processing and Reliability Related Issues; New Superconductors and MgB2.




Properties of Materials


Book Description

Crystals are sometimes called 'Flowers of the Mineral Kingdom'. In addition to their great beauty, crystals and other textured materials are enormously useful in electronics, optics, acoustics and many other engineering applications. This richly illustrated text describes the underlying principles of crystal physics and chemistry, covering a wide range of topics and illustrating numerous applications in many fields of engineering using the most important materials today. Tensors, matrices, symmetry and structure-property relationships form the main subjects of the book. While tensors and matrices provide the mathematical framework for understanding anisotropy, on which the physical and chemical properties of crystals and textured materials often depend, atomistic arguments are also needed to quantify the property coefficients in various directions. The atomistic arguments are partly based on symmetry and partly on the basic physics and chemistry of materials. After introducing the point groups appropriate for single crystals, textured materials and ordered magnetic structures, the directional properties of many different materials are described: linear and nonlinear elasticity, piezoelectricity and electrostriction, magnetic phenomena, diffusion and other transport properties, and both primary and secondary ferroic behavior. With crystal optics (its roots in classical mineralogy) having become an important component of the information age, nonlinear optics is described along with the piexo-optics, magneto-optics, and analogous linear and nonlinear acoustic wave phenomena. Enantiomorphism, optical activity, and chemical anisotropy are discussed in the final chapters of the book.




Abstracts


Book Description




Microwave Materials and Applications


Book Description

Die jüngsten Fortschritte im Bereich der drahtlosen Telekommunikation und dem Internet der Dinge sorgen bei drahtlosen Systemen, beim Satellitenfernsehen und bei intelligenten Transportsystemen der 5. Generation für eine höhere Nachfrage nach dielektrischen Materialien und modernen Fertigungstechniken. Diese Materialien bieten ausgezeichnete elektrische, dielektrische und thermische Eigenschaften und verfügen über enormes Potenzial, vor allem bei der drahtlosen Kommunikation, bei flexibler Elektronik und gedruckter Elektronik. Microwave Materials and Applications erläutert die herkömmlichen Methoden zur Messung der dielektrischen Eigenschaften im Mikrowellenbereich, die verschiedenen Ansätze zur Lösung von Problemen der Materialchemie und von Kristallstrukturen, in den Bereichen Doping, Substitution und Aufbau von Verbundwerkstoffen. Besonderer Schwerpunkt liegt auf Verarbeitungstechniken, Einflüssen der Morphologie und der Anwendung von Materialien in der Mikrowellentechnik. Gleichzeitig werden viele der jüngsten Forschungserkenntnisse bei Mikrowellen-Dielektrika und -Anwendungen zusammengefasst. Die verschiedenen Kapitel untersuchen: Oxidkeramiken für dielektrische Resonatoren und Substrate, HTCC-, LTCC- und ULTCC-Bänder für Substrate, Polymer-Keramik-Verbundstoffe für Leiterplatten, Elastomer-Keramik-Verbundstoffe für flexible Elektronik, dielektrische Tinten, Materialien für die EMV-Abschirmung, Mikrowellen-Ferrite. Ein umfassender Anhang präsentiert die grundlegenden Eigenschaften von mehr als 4000 verlustarmen dielektrischen Keramiken, deren Zusammensetzung, kristalline Struktur und dielektrischen Eigenschaften für Mikrowellenanwendungen. Microwave Materials and Applications wirft einen Blick auf sämtliche Aspekte von Mikrowellenmaterialien und -anwendungen, ein nützliches Handbuch für Wissenschaftler, Unternehmen, Ingenieure und Studenten, die sich mit heutigen und neuen Anwendungen in den Bereichen drahtlose Kommunikation und Unterhaltungselektronik beschäftigen.




Dictionary of Ceramics


Book Description

First published in 1994. Routledge is an imprint of Taylor & Francis, an informa company.




Functional Materials


Book Description

Functional materials have assumed a very prominent position in several high-tech areas. Such materials are not being classified on the basis of their origin, nature of bonding or processing techniques but are classified on the basis of the functions they can perform. This is a significant departure from the earlier schemes in which materials were described as metals, alloys, ceramics, polymers, glass materials etc. Several new processing techniques have also evolved in the recent past. Because of the diversity of materials and their functions it has become extremely difficult to obtain information from single source. Functional Materials: Preparation, Processing and Applications provides a comprehensive review of the latest developments. - Serves as a ready reference for Chemistry, Physics and Materials Science researchers by covering a wide range of functional materials in one book - Aids in the design of new materials by emphasizing structure or microstructure – property correlation - Covers the processing of functional materials in detail, which helps in conceptualizing the applications of them