Preclinical Development Handbook


Book Description

A clear, straightforward resource to guide you through preclinical drug development Following this book's step-by-step guidance, you can successfully initiate and complete critical phases of preclinical drug development. The book serves as a basic, comprehensive reference to prioritizing and optimizing leads, dose formulation, ADME, pharmacokinetics, modeling, and regulations. This authoritative, easy-to-use resource covers all the issues that need to be considered and provides detailed instructions for current methods and techniques. Each chapter is written by one or more leading experts in the field. These authors, representing the many disciplines involved in preclinical toxicology screening and testing, give you the tools needed to apply an effective multidisciplinary approach. The editor has carefully reviewed all the chapters to ensure that each one is thorough, accurate, and clear. Among the key topics covered are: * Modeling and informatics in drug design * Bioanalytical chemistry * Absorption of drugs after oral administration * Transporter interactions in the ADME pathway of drugs * Metabolism kinetics * Mechanisms and consequences of drug-drug interactions Each chapter offers a full exploration of problems that may be encountered and their solutions. The authors also set forth the limitations of various methods and techniques used in determining the safety and efficacy of a drug during the preclinical stage. This publication should be readily accessible to all pharmaceutical scientists involved in preclinical testing, enabling them to perform and document preclinical safety tests to meet all FDA requirements before clinical trials may begin.







Ecological Engineering


Book Description

Less expensive and more environmentally appropriate than conventional engineering approaches, constructed ecosystems are a promising technology for environmental problem solving. Undergraduates, graduate students, and working professionals need an introductory text that details the biology and ecology of this rapidly developing discipline, known as




Surveying Antimicrobial Resistance: The New Complexity of the Problem


Book Description

In January of 2015, under the 1st International Caparica Conference in Antibiotic Resistance, a Research Topic entitled: “Surveying Antimicrobial Resistance: Approaches, Issues, and Challenges to overcome”, was published (http://journal.frontiersin.org/researchtopic/3763/surveying-antimicrobial-resistanceapproaches- issues-and-challenges-to-overcome). The problem of antimicrobial resistance (AMR), caused by excessive and inappropriate use of antibiotics, is a public health issue that concerns us all. The introduction of penicillin in the 1940s, the start of the antibiotics era, has been recognized as one of the greatest advances in therapeutic medicine. However, according to the World Health Organization (WHO), AMR infections are now an increasing worldwide public health threat and a post-antibiotic era is imminent, where common infections and minor injuries could be fatal. AMR is a typical ‘One Health’ problem, in which livestock animals and the environment constitute AMR reservoirs and transmission routes to and from the human population. Without effective antimicrobials to counter and prevent infections, other major achievements in modern medicine, such as organ transplantation, cancer chemotherapy and major surgery, risk being compromised. AMR infections in animals have negative outcomes on animal health, welfare, biosecurity and production. In 2006, the ban of growth promoting antibiotics highlighted antibiotic use in animal production as a risk factor in the development of antibiotic resistant bacteria. Bacteria can be transferred to humans via several routes; consumption of animal products, exposure through contact with animals, and the contamination of ground and surface waters by animal waste products. Therefore, it is of utmost importance that antimicrobial use in animals is reduced to a minimum, without compromising animal health and welfare. Mechanisms of bacterial antibiotic resistance are classified according to the types of antibiotic molecules or their targets in the cell. Environmental antibiotic-resistance genes are spread then acquired by clinically relevant microorganisms. Many resistance genes are conveyed into pathogen genomes via mobile genetic elements such as plasmids, transposons or integrons, increasing the propagation of potential resistant pathogens. Substantial progress has already been made in elucidating the basic regulatory networks that endow bacteria with their extraordinary capacity to adapt to a diversity of lifestyles and external stress factors. So how will we face bacteria in the future?




ICoRD'13


Book Description

This book showcases over 100 cutting-edge research papers from the 4th International Conference on Research into Design (ICoRD’13) – the largest in India in this area – written by eminent researchers from over 20 countries, on the design process, methods and tools, for supporting global product development (GPD). The special features of the book are the variety of insights into the GPD process, and the host of methods and tools at the cutting edge of all major areas of design research for its support. The main benefit of this book for researchers in engineering design and GPD are access to the latest quality research in this area; for practitioners and educators, it is exposure to an empirically validated suite of methods and tools that can be taught and practiced.




The Cornell Widow


Book Description




The Illio


Book Description




Plans for Progress Program


Book Description




Microwave Effects on DNA and Proteins


Book Description

For several years, researchers have been reporting the effects of microwave radiation/heating on both the structure and function of DNA, RNA and proteins. For the most part, favourable accelerated biological functions are observed as microwave induced heating occurs, but other not-so favourable effects are also observed, such as denaturation, fragmentation and the so called and ill-explained, non-thermal microwave effects. This volume, the first of its kind, brings researchers together from around the world to discuss their current findings and thinking on the effects of Microwaves on Biological systems, particularly DNA, RNA and proteins, in the form of contributed edited chapters.