Chitin and Chitosan


Book Description

Offers a comprehensive guide to the isolation, properties and applications of chitin and chitosan Chitin and Chitosan: Properties and Applications presents a comprehensive review of the isolation, properties and applications of chitin and chitosan. These promising biomaterials have the potential to be broadly applied and there is a growing market for these biopolymers in areas such as medical and pharmaceutical, packaging, agricultural, textile, cosmetics, nanoparticles and more. The authors – noted experts in the field – explore the isolation, characterization and the physical and chemical properties of chitin and chitosan. They also examine their properties such as hydrogels, immunomodulation and biotechnology, antimicrobial activity and chemical enzymatic modifications. The book offers an analysis of the myriad medical and pharmaceutical applications as well as a review of applications in other areas. In addition, the authors discuss regulations, markets and perspectives for the use of chitin and chitosan. This important book: Offers a thorough review of the isolation, properties and applications of chitin and chitosan. Contains information on the wide-ranging applications and growing market demand for chitin and chitosan Includes a discussion of current regulations and the outlook for the future Written for Researchers in academia and industry who are working in the fields of chitin and chitosan, Chitin and Chitosan: Properties and Applications offers a review of these promising biomaterials that have great potential due to their material properties and biological functionalities.




Chitosan Based Biomaterials Volume 1


Book Description

Chitosan Based Biomaterials: Fundamentals, Volume 1, provides the latest information on chitosan, a natural polymer derived from the marine material chitin. Chitosan displays unique properties, most notably biocompatibility and biodegradability. It can also be easily tuned to modify its structure or properties, making chitosan an excellent candidate as a biomaterial. Consequently, chitosan is being developed for many biomedical functions, ranging from tissue engineering and implant coatings to drug and gene delivery. This book looks at the fundamentals of chitosan-based biomaterials. - Contains specific focus on the techniques and technologies needed to develop chitosan for biomedical applications - Presents a comprehensive treatment of the fundamentals - Provides contributions from leading researchers with extensive experience in chitosan




Chitosan for Biomaterials II


Book Description

Polymeric Bionanocomposites as Promising Materials for Controlled Drug, by M. Prabaharan, R. Jayakumar; Chitosan and Chitosan Derivatives in Drug Delivery and Tissue Engineering, by R. Riva, H. Ragelle, A. des Rieux, N. Duhem, C. Jérôme, and V. Préat; Chitosan: A Promising Biomaterial for Tissue Engineering Scaffolds, by P. K. Dutta, K. Rinki and J. Dutta; Chitosan-Based Biomaterials for Tissue Repair and Regeneration, by X. Liu, L. Ma, Z. Mao and C. Gao; Use of Chitosan as a Bioactive Implant Coating for Bone-Implant Applications, by M. R. Leedy, H. J. Martin, P. A. Norowski, J. A. Jennings, W. O. Haggard, and J.D. Bumgardner; New Techniques for Optimization of Surface Area and Porosity in Nanochitins and Nanochitosans, by R. A. A. Muzzarelli; Production, Properties and Applications of Fungal Cell Wall Polysaccharides: Chitosan and Glucan, by N. New, T. Furuike, and H. Tamura;




Multifaceted Development and Application of Biopolymers for Biology, Biomedicine and Nanotechnology


Book Description

Nanoparticles for Gene Delivery into Stem Cells and Embryos, by Pallavi Pushp, Rajdeep Kaur, Hoon Taek Lee, Mukesh Kumar Gupta. Engineering of Polysaccharides via Nanotechnology, by Joydeep Dutta. Hydroxyapatite-Packed Chitosan-PMMA Nanocomposite: A Promising Material for Construction of Synthetic Bone, by Arundhati Bhowmick, Subhash Banerjee, Ratnesh Kumar, Patit Paban Kundu. Biodegradable Polymers for Potential Delivery Systems for Therapeutics, by Sanjeev K. Pandey, Chandana Haldar, Dinesh K. Patel, Pralay Maiti. Phytomedicine-Loaded Polymeric Nanomedicines: Potential Cancer Therapeutics, by S. Maya, M. Sabitha, Shantikumar V. Nair, R. Jayakumar. Proteins and Carbohydrates as Polymeric Nanodrug Delivery Systems: Formulation, Properties and Toxicological Evaluation, by Dhanya Narayanan, J. Gopikrishna, Shantikumar V. Nair, Deepthy Menon. Biopolymeric Micro and Nanoparticles: Preparation, Characterization and Industrial Applications, by Anil Kumar Anal, Alisha Tuladhar. Applications of Glyconanoparticles as “Sweet” Glycobiological Therapeutics and Diagnostics, by Naresh Kottari, Yoann M. Chabre, Rishi Sharma, René Roy.




Chitosan for Biomaterials IV


Book Description

This volume presents the recent developments on the biomedical applications of chitosan and its derivatives. Chitosan exhibits unique properties such as non-toxicity, biodegradability and biocompatibility. Since its chemical structure and properties can be easily modified, it can be an ideal candidate as a biomaterial. Consequently, chitosan and its derivatives are being developed in different forms such as nanoparticles, micelles, nanofibers, hydrogels, films and 3D porous materials for various biomedical applications, ranging from drug and gene delivery to tissue engineering and regenerative medicine. The chapters of this volume focus on the potential use of chitosan and its derivatives as a hemostatic agent, tissue sealants, tissue engineering scaffolds, delivery carriers for bioactive molecules in bone tissue engineering and wound dressings. Some chapter’s deal with recent advancements of chitosan-based biomaterials as a drug, gene and transdermal drug delivery carrier. In addition, the volume focusses on the prospects of chitosan-based systems for the treatment of cancer, eye and other infectious diseases. The volume will be of interest to material scientists, chemists and biotechnologists by providing a better understanding of the physicochemical and biological characteristics of chitosan and its derivatives to develop more appropriate and innovative chitosan-based materials modified for unlimited practical applications in biomedical fields.




Chitin, Chitosan, Oligosaccharides and Their Derivatives


Book Description

Biopolymers found in marine animals and plants offer tremendous, largely untapped pharmaceutical potential. Research shows that these biopolymers can be used to combat various infectious as well as inflammatory, oxidative, and carcinogenic factors. Chitin, Chitosan, Oligosaccharides and Their Derivatives: Biological Activities and Applications cove




Chitin and Chitosan for Regenerative Medicine


Book Description

The book is an excellent reference for scientists, researchers and students working in the field of areas of biopolymeric biomaterials, biomedical engineering, therapeutics, tissue engineering and regenerative medicine. The book is divided into two parts: Part I will focus on the tissue engineering and Part II focuses on therapeutics, functionalization and computer-aided techniques. The book consists of 13 chapters contributed by 20 international contributors who are leading experts in the field of biopolymers and its applications. It will focus on the advancements of chitin and chitosan in regenerative medicine. Regenerative medicine in tissue engineering is the process of replacing or regenerating human cells, tissues, or organs to restore or establish normal function. It is an incredibly progressive field of medicine that may, in the near future, help with the shortage of life-saving organs available through donation for transplantation vis-a-vis regenerative medicine focuses on therapeutics, functionalization and computer-aided techniques. It also covers physical and chemical aspects of chitin and chitosan, structural modifications for biomedical applications, chitosan based scaffolds and biomodelling in tissue engineering, nanomedicines and therapeutic applications. With the broad range of applications, the world is waiting for biopolymers to serve as the basis for regenerative medicine and biomedical applications.




Chitin and Chitosan Derivatives


Book Description

A natural long-chain polymer, chitin is the main component of the cell walls of fungi, the exoskeletons of arthropods (including crustaceans and insects), the radulas of mollusks, and the beaks and internal shells of cephalopods. However, marine crustacean shells are the primary sources of the chitin derivative chitosan. Chitin and chitosan are useful for various biological and biomedical applications, although they have been limited by poor solubility in the past. Current research focuses on increasing their solubility and bioactivity through molecular modifications. The resulting derivatives are receiving much attention for interesting properties, such as biocompatibility, biodegradability, and nontoxicity, that make them suitable for use in the biomedical field. Chitin and Chitosan Derivatives: Advances in Drug Discovery and Developments presents current research trends in the synthesis of chitin and chitosan derivatives, their biological activities, and their biomedical applications. Part I discusses basic information about the synthesis and characterization of a variety of derivatives, including the preparation of chitin nanofibers. Part II covers chitin and chitosan modifications as the basis for biological applications. It describes antioxidant, anti-inflammatory, anticancer, antiviral, anticoagulant, and antimicrobial activities. Part III addresses chemically modified and composite materials of chitin and chitosan derivatives for biomedical applications, such as tissue engineering, nanomedicine, drug delivery, and wound dressing. A must-have reference for novices and experts in biotechnology, natural products, materials science, nutraceuticals, and biomedical engineering, this book presents a wide range of biological and biomedical applications of chitin and chitosan derivatives for drug discovery and development.




Electrospun Nanofibers


Book Description

Electrospun Nanofibers covers advances in the electrospinning process including characterization, testing and modeling of electrospun nanofibers, and electrospinning for particular fiber types and applications. Electrospun Nanofibers offers systematic and comprehensive coverage for academic researchers, industry professionals, and postgraduate students working in the field of fiber science. Electrospinning is the most commercially successful process for the production of nanofibers and rising demand is driving research and development in this field. Rapid progress is being made both in terms of the electrospinning process and in the production of nanofibers with superior chemical and physical properties. Electrospinning is becoming more efficient and more specialized in order to produce particular fiber types such as bicomponent and composite fibers, patterned and 3D nanofibers, carbon nanofibers and nanotubes, and nanofibers derived from chitosan. - Provides systematic and comprehensive coverage of the manufacture, properties, and applications of nanofibers - Covers recent developments in nanofibers materials including electrospinning of bicomponent, chitosan, carbon, and conductive fibers - Brings together expertise from academia and industry to provide comprehensive, up-to-date information on nanofiber research and development - Offers systematic and comprehensive coverage for academic researchers, industry professionals, and postgraduate students working in the field of fiber science




Advances in Organic Synthesis


Book Description

Advances in Organic Synthesis is a book series devoted to the latest advances in synthetic approaches towards challenging structures. It presents comprehensive articles written by eminent authorities on different synthetic approaches to selected target molecules and new methods developed to achieve specific synthetic transformations. Contributions are written by eminent scientists and each volume is edited by an authority in the field. Advances in Organic Synthesis is essential for all organic chemists in academia and the industry who wish to keep abreast of rapid and important developments in the field. This volume presents the following reviews: o Catalytic Tandem Reactions Triggered by the Introduction of a Carbonyl Function o Synthetic Applications of Bifunctional Knölker Type Iron Complexes as (De)hydrogenation Catalysts o Superelectrophilic Activation of Alkynes, Alkenes, and Allenes o Chitosan and its Derivatives: Synthesis Strategy and Applications o Synthesis of N-Containing Heterocycles via Hypervalent Iodine(III)-Mediated Intramolecular Oxidative Cyclization o Advancements in Ionic Liquids for the Formation of Morita Baylis-Hillman Adducts.