General Galois Geometries


Book Description

This book is the second edition of the third and last volume of a treatise on projective spaces over a finite field, also known as Galois geometries. This volume completes the trilogy comprised of plane case (first volume) and three dimensions (second volume). This revised edition includes much updating and new material. It is a mostly self-contained study of classical varieties over a finite field, related incidence structures and particular point sets in finite n-dimensional projective spaces. General Galois Geometries is suitable for PhD students and researchers in combinatorics and geometry. The separate chapters can be used for courses at postgraduate level.




Current Research Topics on Galois Geometry


Book Description

Galois geometry is the theory that deals with substructures living in projective spaces over finite fields, also called Galois fields. This collected work presents current research topics in Galois geometry, and their applications. Presented topics include classical objects, blocking sets and caps in projective spaces, substructures in finite classical polar spaces, the polynomial method in Galois geometry, finite semifields, links between Galois geometry and coding theory, as well as links between Galois geometry and cryptography. (Imprint: Nova)




Current Research Topics in Galois Geometry


Book Description

Galois geometry is the theory that deals with substructures living in projective spaces over finite fields, also called Galois fields. This collected work presents current research topics in Galois geometry, and their applications. Presented topics include classical objects, blocking sets and caps in projective spaces, substructures in finite classical polar spaces, the polynomial method in Galois geometry, finite semifields, links between Galois geometry and coding theory, as well as links between Galois geometry and cryptography.




Topics in Galois Theory


Book Description

This book is based on a course given by the author at Harvard University in the fall semester of 1988. The course focused on the inverse problem of Galois Theory: the construction of field extensions having a given finite group as Galois group. In the first part of the book, classical methods and results, such as the Scholz and Reichardt constructi




Galois Theories


Book Description

Starting from the classical finite-dimensional Galois theory of fields, this book develops Galois theory in a much more general context, presenting work by Grothendieck in terms of separable algebras and then proceeding to the infinite-dimensional case, which requires considering topological Galois groups. In the core of the book, the authors first formalize the categorical context in which a general Galois theorem holds, and then give applications to Galois theory for commutative rings, central extensions of groups, the topological theory of covering maps and a Galois theorem for toposes. The book is designed to be accessible to a wide audience: the prerequisites are first courses in algebra and general topology, together with some familiarity with the categorical notions of limit and adjoint functors. The first chapters are accessible to advanced undergraduates, with later ones at a graduate level. For all algebraists and category theorists this book will be a rewarding read.




Galois Groups and Fundamental Groups


Book Description

Assuming little technical background, the author presents the strong analogies between these two concepts starting at an elementary level.




Galois Theory for Beginners


Book Description

Galois theory is the culmination of a centuries-long search for a solution to the classical problem of solving algebraic equations by radicals. This book follows the historical development of the theory, emphasizing concrete examples along the way. It is suitable for undergraduates and beginning graduate students.




Large Networks and Graph Limits


Book Description

Recently, it became apparent that a large number of the most interesting structures and phenomena of the world can be described by networks. To develop a mathematical theory of very large networks is an important challenge. This book describes one recent approach to this theory, the limit theory of graphs, which has emerged over the last decade. The theory has rich connections with other approaches to the study of large networks, such as ``property testing'' in computer science and regularity partition in graph theory. It has several applications in extremal graph theory, including the exact formulations and partial answers to very general questions, such as which problems in extremal graph theory are decidable. It also has less obvious connections with other parts of mathematics (classical and non-classical, like probability theory, measure theory, tensor algebras, and semidefinite optimization). This book explains many of these connections, first at an informal level to emphasize the need to apply more advanced mathematical methods, and then gives an exact development of the theory of the algebraic theory of graph homomorphisms and of the analytic theory of graph limits. This is an amazing book: readable, deep, and lively. It sets out this emerging area, makes connections between old classical graph theory and graph limits, and charts the course of the future. --Persi Diaconis, Stanford University This book is a comprehensive study of the active topic of graph limits and an updated account of its present status. It is a beautiful volume written by an outstanding mathematician who is also a great expositor. --Noga Alon, Tel Aviv University, Israel Modern combinatorics is by no means an isolated subject in mathematics, but has many rich and interesting connections to almost every area of mathematics and computer science. The research presented in Lovasz's book exemplifies this phenomenon. This book presents a wonderful opportunity for a student in combinatorics to explore other fields of mathematics, or conversely for experts in other areas of mathematics to become acquainted with some aspects of graph theory. --Terence Tao, University of California, Los Angeles, CA Laszlo Lovasz has written an admirable treatise on the exciting new theory of graph limits and graph homomorphisms, an area of great importance in the study of large networks. It is an authoritative, masterful text that reflects Lovasz's position as the main architect of this rapidly developing theory. The book is a must for combinatorialists, network theorists, and theoretical computer scientists alike. --Bela Bollobas, Cambridge University, UK




Topics in Galois Fields


Book Description

This monograph provides a self-contained presentation of the foundations of finite fields, including a detailed treatment of their algebraic closures. It also covers important advanced topics which are not yet found in textbooks: the primitive normal basis theorem, the existence of primitive elements in affine hyperplanes, and the Niederreiter method for factoring polynomials over finite fields. We give streamlined and/or clearer proofs for many fundamental results and treat some classical material in an innovative manner. In particular, we emphasize the interplay between arithmetical and structural results, and we introduce Berlekamp algebras in a novel way which provides a deeper understanding of Berlekamp's celebrated factorization algorithm. The book provides a thorough grounding in finite field theory for graduate students and researchers in mathematics. In view of its emphasis on applicable and computational aspects, it is also useful for readers working in information and communication engineering, for instance, in signal processing, coding theory, cryptography or computer science.




Dynamics, Statistics and Projective Geometry of Galois Fields


Book Description

V. I. Arnold reveals some unexpected connections between such apparently unrelated theories as Galois fields, dynamical systems, ergodic theory, statistics, chaos and the geometry of projective structures on finite sets. The author blends experimental results with examples and geometrical explorations to make these findings accessible to a broad range of mathematicians, from undergraduate students to experienced researchers.