Research Anthology on Bioinformatics, Genomics, and Computational Biology


Book Description

In the evolving environment of bioinformatics, genomics, and computational biology, academic scholars are facing a challenging challenge – keeping informed about the latest research trends and findings. With unprecedented advancements in sequencing technologies, computational algorithms, and machine learning, these fields have become indispensable tools for drug discovery, disease research, genome sequencing, and more. As scholars strive to decode the language of DNA, predict protein structures, and navigate the complexities of biological data analysis, the need for a comprehensive and up-to-date resource becomes paramount. The Research Anthology on Bioinformatics, Genomics, and Computational Biology is a collection of a carefully curated selection of chapters that serves as the solution to the pressing challenge of keeping pace with the dynamic advancements in these critical disciplines. This anthology is designed to address the informational gap by providing scholars with a consolidated and authoritative source that sheds light on critical issues, innovative theories, and transformative developments in the field. It acts as a single reference point, offering insights into conceptual, methodological, technical, and managerial issues while also providing a glimpse into emerging trends and future opportunities.




Encyclopedia of Data Science and Machine Learning


Book Description

Big data and machine learning are driving the Fourth Industrial Revolution. With the age of big data upon us, we risk drowning in a flood of digital data. Big data has now become a critical part of both the business world and daily life, as the synthesis and synergy of machine learning and big data has enormous potential. Big data and machine learning are projected to not only maximize citizen wealth, but also promote societal health. As big data continues to evolve and the demand for professionals in the field increases, access to the most current information about the concepts, issues, trends, and technologies in this interdisciplinary area is needed. The Encyclopedia of Data Science and Machine Learning examines current, state-of-the-art research in the areas of data science, machine learning, data mining, and more. It provides an international forum for experts within these fields to advance the knowledge and practice in all facets of big data and machine learning, emphasizing emerging theories, principals, models, processes, and applications to inspire and circulate innovative findings into research, business, and communities. Covering topics such as benefit management, recommendation system analysis, and global software development, this expansive reference provides a dynamic resource for data scientists, data analysts, computer scientists, technical managers, corporate executives, students and educators of higher education, government officials, researchers, and academicians.




Classification in BioApps


Book Description

This book on classification in biomedical image applications presents original and valuable research work on advances in this field, which covers the taxonomy of both supervised and unsupervised models, standards, algorithms, applications and challenges. Further, the book highlights recent scientific research on artificial neural networks in biomedical applications, addressing the fundamentals of artificial neural networks, support vector machines and other advanced classifiers, as well as their design and optimization. In addition to exploring recent endeavours in the multidisciplinary domain of sensors, the book introduces readers to basic definitions and features, signal filters and processing, biomedical sensors and automation of biomeasurement systems. The target audience includes researchers and students at engineering and medical schools, researchers and engineers in the biomedical industry, medical doctors and healthcare professionals.




Statistical Methods for the Analysis of Genomic Data


Book Description

In recent years, technological breakthroughs have greatly enhanced our ability to understand the complex world of molecular biology. Rapid developments in genomic profiling techniques, such as high-throughput sequencing, have brought new opportunities and challenges to the fields of computational biology and bioinformatics. Furthermore, by combining genomic profiling techniques with other experimental techniques, many powerful approaches (e.g., RNA-Seq, Chips-Seq, single-cell assays, and Hi-C) have been developed in order to help explore complex biological systems. As a result of the increasing availability of genomic datasets, in terms of both volume and variety, the analysis of such data has become a critical challenge as well as a topic of great interest. Therefore, statistical methods that address the problems associated with these newly developed techniques are in high demand. This book includes a number of studies that highlight the state-of-the-art statistical methods for the analysis of genomic data and explore future directions for improvement.




Handbook of Statistical Bioinformatics


Book Description

Now in its second edition, this handbook collects authoritative contributions on modern methods and tools in statistical bioinformatics with a focus on the interface between computational statistics and cutting-edge developments in computational biology. The three parts of the book cover statistical methods for single-cell analysis, network analysis, and systems biology, with contributions by leading experts addressing key topics in probabilistic and statistical modeling and the analysis of massive data sets generated by modern biotechnology. This handbook will serve as a useful reference source for students, researchers and practitioners in statistics, computer science and biological and biomedical research, who are interested in the latest developments in computational statistics as applied to computational biology.




ITNG 2021 18th International Conference on Information Technology-New Generations


Book Description

This volume represents the 18th International Conference on Information Technology - New Generations (ITNG), 2021. ITNG is an annual event focusing on state of the art technologies pertaining to digital information and communications. The applications of advanced information technology to such domains as astronomy, biology, education, geosciences, security, and health care are the among topics of relevance to ITNG. Visionary ideas, theoretical and experimental results, as well as prototypes, designs, and tools that help the information readily flow to the user are of special interest. Machine Learning, Robotics, High Performance Computing, and Innovative Methods of Computing are examples of related topics. The conference features keynote speakers, a best student award, poster award, service award, a technical open panel, and workshops/exhibits from industry, government and academia. This publication is unique as it captures modern trends in IT with a balance of theoretical and experimental work. Most other work focus either on theoretical or experimental, but not both. Accordingly, we do not know of any competitive literature.




Artificial Neural Networks – ICANN 2009


Book Description

This two volume set LNCS 5768 and LNCS 5769 constitutes the refereed proceedings of the 19th International Conference on Artificial Neural Networks, ICANN 2009, held in Limassol, Cyprus, in September 2009. The 200 revised full papers presented were carefully reviewed and selected from more than 300 submissions. The first volume is divided in topical sections on learning algorithms; computational neuroscience; hardware implementations and embedded systems; self organization; intelligent control and adaptive systems; neural and hybrid architectures; support vector machine; and recurrent neural network.




Bioinformatics and Biomedical Engineering


Book Description

This two-volume set LNBI 10813 and LNBI 10814 constitutes the proceedings of the 6th International Work-Conference on Bioinformatics and Biomedical Engineering, IWBBIO 2018, held in Granada, Spain, in April 2018.The 88 regular papers presented were carefully reviewed and selected from 273 submissions. The scope of the conference spans the following areas: bioinformatics for healthcare and diseases; bioinformatics tools to integrate omics dataset and address biological question; challenges and advances in measurement and self-parametrization of complex biological systems; computational genomics; computational proteomics; computational systems for modelling biological processes; drug delivery system design aided by mathematical modelling and experiments; generation, management and biological insights from big data; high-throughput bioinformatic tools for medical genomics; next generation sequencing and sequence analysis; interpretable models in biomedicine and bioinformatics; little-big data. Reducing the complexity and facing uncertainty of highly underdetermined phenotype prediction problems; biomedical engineering; biomedical image analysis; biomedical signal analysis; challenges in smart and wearable sensor design for mobile health; and healthcare and diseases.




Transcriptomics and Gene Regulation


Book Description

This volume focuses on modern computational and statistical tools for translational gene expression and regulation research to improve prognosis, diagnostics, prediction of severity, and therapies for human diseases. It introduces some of state of the art technologies as well as computational and statistical tools for translational bioinformatics in the areas of gene transcription and regulation, including the tools for next generation sequencing analyses, alternative spicing, the modeling of signaling pathways, network analyses in predicting disease genes, as well as protein and gene expression data integration in complex human diseases etc. The book is particularly useful for researchers and students in the field of molecular biology, clinical biology and bioinformatics, as well as physicians etc. Dr. Jiaqian Wu is assistant professor in the Vivian L. Smith Department of Neurosurgery and Center for Stem Cell and Regenerative Medicine, University of Texas Health Science Centre, Houston, TX, USA.​




Gene Quantification


Book Description

Geneticists and molecular biologists have been interested in quantifying genes and their products for many years and for various reasons (Bishop, 1974). Early molecular methods were based on molecular hybridization, and were devised shortly after Marmur and Doty (1961) first showed that denaturation of the double helix could be reversed - that the process of molecular reassociation was exquisitely sequence dependent. Gillespie and Spiegelman (1965) developed a way of using the method to titrate the number of copies of a probe within a target sequence in which the target sequence was fixed to a membrane support prior to hybridization with the probe - typically a RNA. Thus, this was a precursor to many of the methods still in use, and indeed under development, today. Early examples of the application of these methods included the measurement of the copy numbers in gene families such as the ribosomal genes and the immunoglo bulin family. Amplification of genes in tumors and in response to drug treatment was discovered by this method. In the same period, methods were invented for estimating gene num bers based on the kinetics of the reassociation process - the so-called Cot analysis. This method, which exploits the dependence of the rate of reassociation on the concentration of the two strands, revealed the presence of repeated sequences in the DNA of higher eukaryotes (Britten and Kohne, 1968). An adaptation to RNA, Rot analysis (Melli and Bishop, 1969), was used to measure the abundance of RNAs in a mixed population.