Curve and Surface Fitting with Splines


Book Description

The fitting of a curve or surface through a set of observational data is a very frequent problem in different disciplines (mathematics, engineering, medicine, ...) with many interesting applications. This book describes the algorithms and mathematical fundamentals of a widely used software package for data fitting with (tensor product) splines. As such it gives a survey of possibilities and benefits but also of the problems to cope with when approximating with this popular type of function. In particular it is demonstrated in detail how the properties of B-splines can be fully exploited for improving the computational efficiency and for incorporating different boundary or shape preserving constraints. Special attention is also paid to strategies for an automatic and adaptive knot selection with intent to obtain serious data reductions. The practical use of the smoothing software is illustrated with many examples, academic as well as taken from real life.




Modeling of Curves and Surfaces with MATLAB®


Book Description

This text on geometry is devoted to various central geometrical topics including: graphs of functions, transformations, (non-)Euclidean geometries, curves and surfaces as well as their applications in a variety of disciplines. This book presents elementary methods for analytical modeling and demonstrates the potential for symbolic computational tools to support the development of analytical solutions. The author systematically examines several powerful tools of MATLAB® including 2D and 3D animation of geometric images with shadows and colors and transformations using matrices. With over 150 stimulating exercises and problems, this text integrates traditional differential and non-Euclidean geometries with more current computer systems in a practical and user-friendly format. This text is an excellent classroom resource or self-study reference for undergraduate students in a variety of disciplines.




An Introduction to Numerical Methods


Book Description

Previous editions of this popular textbook offered an accessible and practical introduction to numerical analysis. An Introduction to Numerical Methods: A MATLAB® Approach, Fourth Edition continues to present a wide range of useful and important algorithms for scientific and engineering applications. The authors use MATLAB to illustrate each numerical method, providing full details of the computed results so that the main steps are easily visualized and interpreted. This edition also includes a new chapter on Dynamical Systems and Chaos. Features Covers the most common numerical methods encountered in science and engineering Illustrates the methods using MATLAB Presents numerous examples and exercises, with selected answers at the back of the book




Curve and Surface Fitting


Book Description

The purpose of this book is to reveal the foundations and major features of several basic methods for curve and surface fitting that are currently in use.




Fundamentals of Graphics Using MATLAB


Book Description

This book introduces fundamental concepts and principles of 2D and 3D graphics and is written for undergraduate and postgraduate students of computer science, graphics, multimedia, and data science. It demonstrates the use of MATLAB® programming for solving problems related to graphics and discusses a variety of visualization tools to generate graphs and plots. The book covers important concepts like transformation, projection, surface generation, parametric representation, curve fitting, interpolation, vector representation, and texture mapping, all of which can be used in a wide variety of educational and research fields. Theoretical concepts are illustrated using a large number of practical examples and programming codes, which can be used to visualize and verify the results. Key Features: Covers fundamental concepts and principles of 2D and 3D graphics Demonstrates the use of MATLAB® programming for solving problems on graphics Provides MATLAB® codes as answers to specific numerical problems Provides codes in a simple copy and execute format for the novice learner Focuses on learning through visual representation with extensive use of graphs and plots Helps the reader gain in-depth knowledge about the subject matter through practical examples Contains review questions and practice problems with answers for self-evaluation




Fitting Models to Biological Data Using Linear and Nonlinear Regression


Book Description

Most biologists use nonlinear regression more than any other statistical technique, but there are very few places to learn about curve-fitting. This book, by the author of the very successful Intuitive Biostatistics, addresses this relatively focused need of an extraordinarily broad range of scientists.




Meshfree Approximation Methods with MATLAB


Book Description

Meshfree approximation methods are a relatively new area of research. This book provides the salient theoretical results needed for a basic understanding of meshfree approximation methods. It places emphasis on a hands-on approach that includes MATLAB routines for all basic operations.




Data-Driven Modeling: Using MATLAB® in Water Resources and Environmental Engineering


Book Description

“Data-Driven Modeling: Using MATLAB® in Water Resources and Environmental Engineering” provides a systematic account of major concepts and methodologies for data-driven models and presents a unified framework that makes the subject more accessible to and applicable for researchers and practitioners. It integrates important theories and applications of data-driven models and uses them to deal with a wide range of problems in the field of water resources and environmental engineering such as hydrological forecasting, flood analysis, water quality monitoring, regionalizing climatic data, and general function approximation. The book presents the statistical-based models including basic statistical analysis, nonparametric and logistic regression methods, time series analysis and modeling, and support vector machines. It also deals with the analysis and modeling based on artificial intelligence techniques including static and dynamic neural networks, statistical neural networks, fuzzy inference systems, and fuzzy regression. The book also discusses hybrid models as well as multi-model data fusion to wrap up the covered models and techniques. The source files of relatively simple and advanced programs demonstrating how to use the models are presented together with practical advice on how to best apply them. The programs, which have been developed using the MATLAB® unified platform, can be found on extras.springer.com. The main audience of this book includes graduate students in water resources engineering, environmental engineering, agricultural engineering, and natural resources engineering. This book may be adapted for use as a senior undergraduate and graduate textbook by focusing on selected topics. Alternatively, it may also be used as a valuable resource book for practicing engineers, consulting engineers, scientists and others involved in water resources and environmental engineering.




NUMERICAL, SYMBOLIC AND STATISTICAL COMPUTING FOR CHEMICAL ENGINEERS USING MATLAB


Book Description

Numerical, analytical and statistical computations are routine affairs for chemical engineers. They usually prefer a single software to solve their computational problems, and at present, MATLAB has emerged as a powerful computational language, which is preferably used for this purpose, due to its built-in functions and toolboxes. Considering the needs and convenience of the students, the author has made an attempt to write this book, which explains the various concepts of MATLAB in a systematic way and makes its readers proficient in using MATLAB for computing. It mainly focuses on the applications of MATLAB, rather than its use in programming basic numerical algorithms. Commencing with the introduction to MATLAB, the text covers vector and matrix computations, solution of linear and non-linear equations, differentiation and integration, and solution of ordinary and partial differential equations. Next, analytical computations using the Symbolic Math Toolbox and statistical computations using the Statistics and Machine Learning Toolbox are explained. Finally, the book describes various curve fitting techniques using the Curve Fitting Toolbox. Inclusion of all these advanced-level topics in the book stands it out from the rest. KEY FEATURES  Numerous worked-out examples to enable the readers understand the steps involved in solving the chemical engineering problems  MATLAB codes to explain the computational techniques  Several snapshots to help the readers understand the step-by-step procedures of using the toolboxes  Chapter-end exercises, including short-answer questions and numerical problems  Appendix comprising the definitions of some important and special matrices  Supplemented with Solutions Manual containing complete detailed solutions to the unsolved analytical problems  Accessibility of selected colour figures (including screenshots and results/outputs of the programs) cited in the text at www.phindia.com/Pallab_Ghosh. TARGET AUDIENCE • BE/B.Tech (Chemical Engineering) • ME/M.Tech (Chemical Engineering)




Introduction to Modeling and Simulation


Book Description

Introduction to Modeling and Simulation An essential introduction to engineering system modeling and simulation from a well-trusted source in engineering and education This new introductory-level textbook provides thirteen self-contained chapters, each covering an important topic in engineering systems modeling and simulation. The importance of such a topic cannot be overstated; modeling and simulation will only increase in importance in the future as computational resources improve and become more powerful and accessible, and as systems become more complex. This resource is a wonderful mix of practical examples, theoretical concepts, and experimental sessions that ensure a well-rounded education on the topic. The topics covered in Introduction to Modeling and Simulation are timeless fundamentals that provide the necessary background for further and more advanced study of one or more of the topics. The text includes topics such as linear and nonlinear dynamical systems, continuous-time and discrete-time systems, stability theory, numerical methods for solution of ODEs, PDE models, feedback systems, optimization, regression and more. Each chapter provides an introduction to the topic to familiarize students with the core ideas before delving deeper. The numerous tools and examples help ensure students engage in active learning, acquiring a range of tools for analyzing systems and gaining experience in numerical computation and simulation systems, from an author prized for both his writing and his teaching over the course of his over-40-year career. Introduction to Modeling and Simulation readers will also find: Numerous examples, tools, and programming tips to help clarify points made throughout the textbook, with end-of-chapter problems to further emphasize the material As systems become more complex, a chapter devoted to complex networks including small-world and scale-free networks – a unique advancement for textbooks within modeling and simulation A complementary website that hosts a complete set of lecture slides, a solution manual for end-of-chapter problems, MATLAB files, and case-study exercises Introduction to Modeling and Simulation is aimed at undergraduate and first-year graduate engineering students studying systems, in diverse avenues within the field: electrical, mechanical, mathematics, aerospace, bioengineering, physics, and civil and environmental engineering. It may also be of interest to those in mathematical modeling courses, as it provides in-depth material on MATLAB simulation and contains appendices with brief reviews of linear algebra, real analysis, and probability theory.