Curve & Flow


Book Description

Discover the remarkable story of an orphaned Black boy who grew up to become the groundbreaking architect to the stars, Paul R. Williams. A stunning nonfiction picture-book biography from the Caldecott Honor–winning author and NAACP Image Award–nominated artist. As an orphaned Black boy growing up in America in the early 1900s, Paul R. Williams became obsessed by the concept of "home." He not only dreamed of building his own home, he turned his dreams into drawings. Defying the odds and breaking down the wall of racism, Williams was able to curve around the obstacles in his way to become a world-renowned architect. He designed homes for the biggest celebrities of the day, such as Frank Sinatra and Lucille Ball, and created a number of buildings in Los Angeles that are now considered landmarks. From Andrea J. Loney, the author of the Caldecott Honor Book Double Bass Blues, and award-winning artist Keith Mallett comes a remarkable story of fortitude, hope, and positivity.




Geometric Curve Evolution and Image Processing


Book Description

In image processing, "motions by curvature" provide an efficient way to smooth curves representing the boundaries of objects. In such a motion, each point of the curve moves, at any instant, with a normal velocity equal to a function of the curvature at this point. This book is a rigorous and self-contained exposition of the techniques of "motion by curvature". The approach is axiomatic and formulated in terms of geometric invariance with respect to the position of the observer. This is translated into mathematical terms, and the author develops the approach of Olver, Sapiro and Tannenbaum, which classifies all curve evolution equations. He then draws a complete parallel with another axiomatic approach using level-set methods: this leads to generalized curvature motions. Finally, novel, and very accurate, numerical schemes are proposed allowing one to compute the solution of highly degenerate evolution equations in a completely invariant way. The convergence of this scheme is also proved.







Frequency Curve Methods


Book Description




Curve and Surface Reconstruction


Book Description

Many applications in science and engineering require a digital model of a real physical object. Advanced scanning technology has made it possible to scan such objects and generate point samples on their boundaries. This book, first published in 2007, shows how to compute a digital model from this point sample. After developing the basics of sampling theory and its connections to various geometric and topological properties, the author describes a suite of algorithms that have been designed for the reconstruction problem, including algorithms for surface reconstruction from dense samples, from samples that are not adequately dense and from noisy samples. Voronoi- and Delaunay-based techniques, implicit surface-based methods and Morse theory-based methods are covered. Scientists and engineers working in drug design, medical imaging, CAD, GIS, and many other areas will benefit from this first book on the subject.




Transactions


Book Description




Annual Report


Book Description




Bulletin


Book Description




Lectures on Mean Curvature Flows


Book Description

``Mean curvature flow'' is a term that is used to describe the evolution of a hypersurface whose normal velocity is given by the mean curvature. In the simplest case of a convex closed curve on the plane, the properties of the mean curvature flow are described by Gage-Hamilton's theorem. This theorem states that under the mean curvature flow, the curve collapses to a point, and if the flow is diluted so that the enclosed area equals $\pi$, the curve tends to the unit circle. In thisbook, the author gives a comprehensive account of fundamental results on singularities and the asymptotic behavior of mean curvature flows in higher dimensions. Among other topics, he considers in detail Huisken's theorem (a generalization of Gage-Hamilton's theorem to higher dimension), evolutionof non-convex curves and hypersurfaces, and the classification of singularities of the mean curvature flow. Because of the importance of the mean curvature flow and its numerous applications in differential geometry and partial differential equations, as well as in engineering, chemistry, and biology, this book can be useful to graduate students and researchers working in these areas. The book would also make a nice supplementary text for an advanced course in differential geometry.Prerequisites include basic differential geometry, partial differential equations, and related applications.




Cellular Flows


Book Description

A cell, whose spatial extent is small compared with a surrounding flow, can develop inside a vortex. Such cells, often referred to as vortex breakdown bubbles, provide stable and clean flame in combustion chambers; they also reduce the lift force of delta wings. This book analyzes cells in slow and fast, one- and two-fluid flows and describes the mechanisms of cell generation: (a) minimal energy dissipation, (b) competing forces, (c) jet entrainment, and (d) swirl decay. The book explains the vortex breakdown appearance, discusses its features, and indicates means of its control. Written in acceptable, non-math-heavy format, it stands to be a useful learning tool for engineers working with combustion chambers, chemical and biological reactors, and delta-wing designs.