Collaborative Cyber Threat Intelligence


Book Description

Threat intelligence is a surprisingly complex topic that goes far beyond the obvious technical challenges of collecting, modelling and sharing technical indicators. Most books in this area focus mainly on technical measures to harden a system based on threat intel data and limit their scope to single organizations only. This book provides a unique angle on the topic of national cyber threat intelligence and security information sharing. It also provides a clear view on ongoing works in research laboratories world-wide in order to address current security concerns at national level. It allows practitioners to learn about upcoming trends, researchers to share current results, and decision makers to prepare for future developments.




Cyber Threat Intelligence


Book Description

This book provides readers with up-to-date research of emerging cyber threats and defensive mechanisms, which are timely and essential. It covers cyber threat intelligence concepts against a range of threat actors and threat tools (i.e. ransomware) in cutting-edge technologies, i.e., Internet of Things (IoT), Cloud computing and mobile devices. This book also provides the technical information on cyber-threat detection methods required for the researcher and digital forensics experts, in order to build intelligent automated systems to fight against advanced cybercrimes. The ever increasing number of cyber-attacks requires the cyber security and forensic specialists to detect, analyze and defend against the cyber threats in almost real-time, and with such a large number of attacks is not possible without deeply perusing the attack features and taking corresponding intelligent defensive actions – this in essence defines cyber threat intelligence notion. However, such intelligence would not be possible without the aid of artificial intelligence, machine learning and advanced data mining techniques to collect, analyze, and interpret cyber-attack campaigns which is covered in this book. This book will focus on cutting-edge research from both academia and industry, with a particular emphasis on providing wider knowledge of the field, novelty of approaches, combination of tools and so forth to perceive reason, learn and act on a wide range of data collected from different cyber security and forensics solutions. This book introduces the notion of cyber threat intelligence and analytics and presents different attempts in utilizing machine learning and data mining techniques to create threat feeds for a range of consumers. Moreover, this book sheds light on existing and emerging trends in the field which could pave the way for future works. The inter-disciplinary nature of this book, makes it suitable for a wide range of audiences with backgrounds in artificial intelligence, cyber security, forensics, big data and data mining, distributed systems and computer networks. This would include industry professionals, advanced-level students and researchers that work within these related fields.




Cyber Threat Intelligence: Identifying and Mitigating Cyber Threats


Book Description

Dive into the realm of cybersecurity with 'Cyber Threat Intelligence: Enhancing Security Through Proactive Detection.' This essential guide provides a comprehensive overview of cyber threat intelligence, empowering cybersecurity professionals and organizations to identify, mitigate, and prevent cyber threats effectively. From understanding threat actors and collection techniques to analyzing and applying intelligence for strategic decision-making, each chapter offers practical insights, methodologies, and real-world examples. Whether you're defending against sophisticated cyber attacks or enhancing your threat intelligence capabilities, this book serves as your indispensable companion in navigating the evolving landscape of cybersecurity.




Cyber-Security Threats, Actors, and Dynamic Mitigation


Book Description

Cyber-Security Threats, Actors, and Dynamic Mitigation provides both a technical and state-of-the-art perspective as well as a systematic overview of the recent advances in different facets of cyber-security. It covers the methodologies for modeling attack strategies used by threat actors targeting devices, systems, and networks such as smart homes, critical infrastructures, and industrial IoT. With a comprehensive review of the threat landscape, the book explores both common and sophisticated threats to systems and networks. Tools and methodologies are presented for precise modeling of attack strategies, which can be used both proactively in risk management and reactively in intrusion prevention and response systems. Several contemporary techniques are offered ranging from reconnaissance and penetration testing to malware detection, analysis, and mitigation. Advanced machine learning-based approaches are also included in the area of anomaly-based detection, that are capable of detecting attacks relying on zero-day vulnerabilities and exploits. Academics, researchers, and professionals in cyber-security who want an in-depth look at the contemporary aspects of the field will find this book of interest. Those wanting a unique reference for various cyber-security threats and how they are detected, analyzed, and mitigated will reach for this book often.




Detecting and Mitigating Robotic Cyber Security Risks


Book Description

Risk detection and cyber security play a vital role in the use and success of contemporary computing. By utilizing the latest technological advances, more effective prevention techniques can be developed to protect against cyber threats. Detecting and Mitigating Robotic Cyber Security Risks is an essential reference publication for the latest research on new methodologies and applications in the areas of robotic and digital security. Featuring extensive coverage on a broad range of topics, such as authentication techniques, cloud security, and mobile robotics, this book is ideally designed for students, researchers, scientists, and engineers seeking current research on methods, models, and implementations of optimized security in digital contexts.




Effective Model-Based Systems Engineering


Book Description

This textbook presents a proven, mature Model-Based Systems Engineering (MBSE) methodology that has delivered success in a wide range of system and enterprise programs. The authors introduce MBSE as the state of the practice in the vital Systems Engineering discipline that manages complexity and integrates technologies and design approaches to achieve effective, affordable, and balanced system solutions to the needs of a customer organization and its personnel. The book begins with a summary of the background and nature of MBSE. It summarizes the theory behind Object-Oriented Design applied to complex system architectures. It then walks through the phases of the MBSE methodology, using system examples to illustrate key points. Subsequent chapters broaden the application of MBSE in Service-Oriented Architectures (SOA), real-time systems, cybersecurity, networked enterprises, system simulations, and prototyping. The vital subject of system and architecture governance completes the discussion. The book features exercises at the end of each chapter intended to help readers/students focus on key points, as well as extensive appendices that furnish additional detail in particular areas. The self-contained text is ideal for students in a range of courses in systems architecture and MBSE as well as for practitioners seeking a highly practical presentation of MBSE principles and techniques.




Handbook of Research on Machine and Deep Learning Applications for Cyber Security


Book Description

As the advancement of technology continues, cyber security continues to play a significant role in today’s world. With society becoming more dependent on the internet, new opportunities for virtual attacks can lead to the exposure of critical information. Machine and deep learning techniques to prevent this exposure of information are being applied to address mounting concerns in computer security. The Handbook of Research on Machine and Deep Learning Applications for Cyber Security is a pivotal reference source that provides vital research on the application of machine learning techniques for network security research. While highlighting topics such as web security, malware detection, and secure information sharing, this publication explores recent research findings in the area of electronic security as well as challenges and countermeasures in cyber security research. It is ideally designed for software engineers, IT specialists, cybersecurity analysts, industrial experts, academicians, researchers, and post-graduate students.




Cyber-Vigilance and Digital Trust


Book Description

Cyber threats are ever increasing. Adversaries are getting more sophisticated and cyber criminals are infiltrating companies in a variety of sectors. In today’s landscape, organizations need to acquire and develop effective security tools and mechanisms – not only to keep up with cyber criminals, but also to stay one step ahead. Cyber-Vigilance and Digital Trust develops cyber security disciplines that serve this double objective, dealing with cyber security threats in a unique way. Specifically, the book reviews recent advances in cyber threat intelligence, trust management and risk analysis, and gives a formal and technical approach based on a data tainting mechanism to avoid data leakage in Android systems




Computer Security Threats


Book Description

This book on computer security threats explores the computer security threats and includes a broad set of solutions to defend the computer systems from these threats. The book is triggered by the understanding that digitalization and growing dependence on the Internet poses an increased risk of computer security threats in the modern world. The chapters discuss different research frontiers in computer security with algorithms and implementation details for use in the real world. Researchers and practitioners in areas such as statistics, pattern recognition, machine learning, artificial intelligence, deep learning, data mining, data analytics and visualization are contributing to the field of computer security. The intended audience of this book will mainly consist of researchers, research students, practitioners, data analysts, and business professionals who seek information on computer security threats and its defensive measures.




The NICE Cyber Security Framework


Book Description

This textbook is for courses in cyber security education that follow National Initiative for Cybersecurity Education (NICE) KSAs work roles and framework, that adopt the Competency-Based Education (CBE) method. The book follows the CBT (KSA) general framework, meaning each chapter contains three sections, knowledge and questions, and skills/labs for Skills and Abilities. The author makes an explicit balance between knowledge and skills material in information security, giving readers immediate applicable skills. The book is divided into seven parts: Securely Provision; Operate and Maintain; Oversee and Govern; Protect and Defend; Analysis; Operate and Collect; Investigate. All classroom materials (in the book an ancillary) adhere to the NICE framework. Mirrors classes set up by the National Initiative for Cybersecurity Education (NICE) Adopts the Competency-Based Education (CBE) method of teaching, used by universities, corporations, and in government training Includes content and ancillaries that provide skill-based instruction on compliance laws, information security standards, risk response and recovery, and more