Cyclic Nucleotide Signaling in Plants


Book Description

Over the last two decades there has been a growing interest in cyclic nucleotide research in plants with an emphasis on the elucidation of the roles of cGMP and cAMP. In Cyclic Nucleotide Signaling in Plants: Methods and Protocols, expert researchers in the field detail many approaches to better understand the biological role of this important signaling system. Written in the highly successful Methods in Molecular BiologyTM series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Cyclic Nucleotide Signaling in Plants: Methods and Protocols seeks to aid scientist in further understanding signal transduction and the molecular mechanisms underlying cellular signaling.




Calcium Transport Elements in Plants


Book Description

Calcium Transport Elements in Plants discusses the role of calcium in plant development and stress signaling, the mechanism of Ca2+ homeostasis across plant membranes, and the evolution of Ca2+/cation antiporter (CaCA) superfamily proteins. Additional sections cover genome-wide analysis of Annexins and their roles in plants, the roles of calmodulin in abiotic stress responses, calcium transport in relation to plant nutrition/biofortification, and much more. Written by leading experts in the field, this title is an essential resource for students and researchers that need all of the information on calcium transport elements in one place. Calcium transport elements are involved in various structural, physiological and biochemical processes or signal transduction pathways in response to various abiotic and biotic stimuli. Development of high throughput sequencing technology has favored the identification and characterization of numerous gene families in plants in recent years, including the calcium transport elements. - Provides a complete compilation of detailed information on Ca2+ efflux and influx transporters in plants - Discusses the mode of action of calcium transport elements and their classification - Explores the indispensable role of Ca2+ in numerous developmental and stress related pathways




Coding and Decoding of Calcium Signals in Plants


Book Description

Plants cannot move away from their environments. As a result, all plants that have survived to date have evolved sophisticated signaling mechanisms that allow them to perceive, respond, and adapt to constantly changing environmental conditions. Among the many cellular processes that respond to environmental changes, elevation of calcium levels is by far the most universal messenger that matches primary signals to cellular responses. Yet it remains unclear how calcium, a simple cation, translates so many different signals into distinct responses - how is the “specificity” of signal-response coupling encoded within the calcium changes? This book will attempt to answer this question by describing the cellular and molecular mechanisms underlying the coding and decoding of calcium signals in plant cells.




Rhizobiology: Molecular Physiology of Plant Roots


Book Description

This book discusses the recent advancements in the role of various biomolecules in regulating root growth and development. Rhizobiology is a dynamic sub discipline of plant science which collates investigations from various aspects like physiology, biochemistry, genetic analysis and plant–microbe interactions. The physiology and molecular mechanisms of root development have undergone significant advancements in the last couple of decades. Apart from the already known conventional phytohormones (IAA, GA, cytokinin, ethylene and ABA), certain novel biomolecules have been considered as potential growth regulators or hormones regulating plant growth and development. Root phenotyping and plasticity analysis with respect to the specific functional mutants of each biomolecule shall provide substantial information on the molecular pathways of root signaling. Special emphasis provides insights on the tolerance and modulatory mechanisms of root physiology in response to light burst, ROS generation, agravitrophic response, abiotic stress and biotic interactions. Root Apex Cognition: From Neuronal Molecules to Root-Fungal Networks and Suberin in Monocotyledonous Crop Plants: Structure and Function in Response to Abiotic Stresses” are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com. Chapters “Root Apex Cognition: From Neuronal Molecules to Root-Fungal Networks and Suberin in Monocotyledonous Crop Plants: Structure and Function in Response to Abiotic Stresses” are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.







Protein Kinases and Stress Signaling in Plants


Book Description

A comprehensive review of stress signaling in plants using genomics and functional genomic approaches Improving agricultural production and meeting the needs of a rapidly growing global population requires crop systems capable of overcoming environmental stresses. Understanding the role of different signaling components in plant stress regulation is vital to developing crops which can withstand abiotic and biotic stresses without loss of crop yield and productivity. Emphasizing genomics and functional genomic approaches, Protein Kinases and Stress Signaling in Plants is a comprehensive review of cutting-edge research on stress perception, signal transduction, and stress response generation. Detailed chapters cover a broad range of topics central to improving agricultural production developing crop systems capable of overcoming environmental stresses to meet the needs of a rapidly growing global population. This book describes the field of protein kinases and stress signaling with a special emphasis on functional genomics. It presents a highly valuable contribution in the field of stress perception, signal transduction and generation of responses against one or multiple stress signals. This timely resource: Summarizes the role of various kinases involved in stress management Enumerates the role of TOR, GSK3-like kinase, SnRK kinases in different physiological conditions Examines mitogen-activated protein kinases (MAPKs) in different stresses Describes the different aspects of calcium signaling under different stress conditions Examines photo-activated kinases (PAPKs) in varying light conditions Briefs the presence of tyrosine kinases in plants Highlights the cellular functions of receptor ]like protein kinases (RLKs) Possible implication of these kinases in developing stress tolerant crops Protein Kinases and Stress Signaling in Plants: Functional Genomic Perspective is an essential resource for researchers and students in the fields of plant molecular biology and signal transduction, plant responses to stress, plant cell signaling, plant protein kinases, plant biotechnology, transgenic plants and stress biology.




Plant signaling: Understanding the molecular crosstalk


Book Description

​Plant signalling has emerged as an integrated field which has become indispensable in recent times to study any biological process. Over the last decade, an enormous amount of information has been generated in this field and the advances in information technology gave birth to bioinformatics which has helped greatly in managing the galaxy of information. It is now possible to view the different information’s in a systems biology approach which has unravelled the association/ new processes and thus helped us enormously in understanding of the biological processes. The present book is an attempt at understanding the plant signalling processes with different perspectives. Even though the plants are sessile but there exists a tremendous interconnected network of perception at morphological, physiological and molecular levels. The impact of the surrounding environment in terms of abiotic and biotic stresses is significant in terms of its survival, adaptation and productivity for the human welfare. The plants possess a wide array of processes at the organ, tissue and cellular levels which are governed by a plethora of molecules. The molecules govern individual processes and these exists a cross talk between them to form a complex network of processes. The book tries to envision how different processes are operating at different points in the life cycle of the plant.




Photomorphogenesis in Plants and Bacteria


Book Description

This unique resource reviews progress made by scientists researching into how ambient changes in the wavelength, intensity, direction and duration of light environment affect plant growth and development. It explains how combinations of new research with classical photobiology and physiology have made it feasible to interpret intriguing light dependent phenomena such as phototropism, determination of flowering time, shade avoidance etc. at molecular level. Written by over 20 leading experts in the field the book covers major breakthroughs achieved in the last decade. It is generously referenced with more than 2389 bibliographic citations.




Plant Nucleotide Metabolism


Book Description

All organisms produce nucleobases, nucleosides, and nucleotides of purines and pyrimidines. However, while there have been a number of texts on nucleotide metabolism in microorganisms and humans, the presence of these phenomena in plant life has gone comparatively unexplored. This ground-breaking new book is the first to focus exclusively on the aspects of purine nucleotide metabolism and function that are particular to plants, making it a unique and essential resource. The authors provide a comprehensive break down of purine nucleotide structures and metabolic pathways, covering all facets of the topic. Furthermore, they explain the role that purine nucleotides can play in plant development, as well as the effects they may have on human health when ingested. Plant Nucleotide Metabolism offers a unique and important resource to all students, researchers, and lecturers working in plant biochemistry, physiology, chemistry, agricultural sciences, nutrition, and associated fields of research.




Abiotic Stress Adaptation in Plants


Book Description

Environmental insults such as extremes of temperature, extremes of water status as well as deteriorating soil conditions pose major threats to agriculture and food security. Employing contemporary tools and techniques from all branches of science, attempts are being made worldwide to understand how plants respond to abiotic stresses with the aim to help manipulate plant performance that will be better suited to withstand these stresses. This book on abiotic stress attempts to search for possible answers to several basic questions related to plant responses towards abiotic stresses. Presented in this book is a holistic view of the general principles of stress perception, signal transduction and regulation of gene expression. Further, chapters analyze not only model systems but extrapolate interpretations obtained from models to crops. Lastly, discusses how stress-tolerant crop or model plants have been or are being raised through plant breeding and genetic engineering approaches. Twenty three chapters, written by international authorities, integrate molecular details with overall plant structure and physiology, in a text-book style, including key references.