Cyclotomic Fields II


Book Description

This second volume incorporates a number of results which were discovered and/or systematized since the first volume was being written. Again, I limit myself to the cyclotomic fields proper without introducing modular func tions. As in the first volume, the main concern is with class number formulas, Gauss sums, and the like. We begin with the Ferrero-Washington theorems, proving Iwasawa's conjecture that the p-primary part of the ideal class group in the cyclotomic Zp-extension of a cyclotomic field grows linearly rather than exponentially. This is first done for the minus part (the minus referring, as usual, to the eigenspace for complex conjugation), and then it follows for the plus part because of results bounding the plus part in terms of the minus part. Kummer had already proved such results (e.g. if p, (h; then p, (h;). These are now formulated in ways applicable to the Iwasawa invariants, following Iwasawa himself. After that we do what amounts to " Dwork theory," to derive the Gross Koblitz formula expressing Gauss sums in terms of the p-adic gamma function. This lifts Stickel berger's theorem p-adically. Half of the proof relies on a course of Katz, who had first obtained Gauss sums as limits of certain factorials, and thought of using Washnitzer-Monsky cohomology to prove the Gross-Koblitz formula




Cyclotomic Fields I and II


Book Description

Kummer's work on cyclotomic fields paved the way for the development of algebraic number theory in general by Dedekind, Weber, Hensel, Hilbert, Takagi, Artin and others. However, the success of this general theory has tended to obscure special facts proved by Kummer about cyclotomic fields which lie deeper than the general theory. For a long period in the 20th century this aspect of Kummer's work seems to have been largely forgotten, except for a few papers, among which are those by Pollaczek [Po], Artin-Hasse [A-H] and Vandiver [Va]. In the mid 1950's, the theory of cyclotomic fields was taken up again by Iwasawa and Leopoldt. Iwasawa viewed cyclotomic fields as being analogues for number fields of the constant field extensions of algebraic geometry, and wrote a great sequence of papers investigating towers of cyclotomic fields, and more generally, Galois extensions of number fields whose Galois group is isomorphic to the additive group of p-adic integers. Leopoldt concentrated on a fixed cyclotomic field, and established various p-adic analogues of the classical complex analytic class number formulas. In particular, this led him to introduce, with Kubota, p-adic analogues of the complex L-functions attached to cyclotomic extensions of the rationals. Finally, in the late 1960's, Iwasawa [Iw 11] made the fundamental discovery that there was a close connection between his work on towers of cyclotomic fields and these p-adic L-functions of Leopoldt - Kubota.




Introduction to Cyclotomic Fields


Book Description

This text on a central area of number theory covers p-adic L-functions, class numbers, cyclotomic units, Fermat’s Last Theorem, and Iwasawa’s theory of Z_p-extensions. This edition contains a new chapter on the work of Thaine, Kolyvagin, and Rubin, including a proof of the Main Conjecture, as well as a chapter on other recent developments, such as primality testing via Jacobi sums and Sinnott’s proof of the vanishing of Iwasawa’s f-invariant.




Cyclotomic Fields and Zeta Values


Book Description

Written by two leading workers in the field, this brief but elegant book presents in full detail the simplest proof of the "main conjecture" for cyclotomic fields. Its motivation stems not only from the inherent beauty of the subject, but also from the wider arithmetic interest of these questions. From the reviews: "The text is written in a clear and attractive style, with enough explanation helping the reader orientate in the midst of technical details." --ZENTRALBLATT MATH




Sequences, Subsequences, and Consequences


Book Description

Interested readers will find here the thoroughly refereed post-proceedings of the International Workshop of Sequences, Subsequences and Consequences, SSC 2007, held in Los Angeles, USA, in 2007. The 16 revised invited full papers and one revised contributed paper are presented together with three keynote lectures and were carefully reviewed and selected for the book. The theory of sequences has found practical applications in many areas of coded communications and in cryptography.




Galois Theory


Book Description

This book offers the fundamentals of Galois Theory, including a set of copious, well-chosen exercises that form an important part of the presentation. The pace is gentle and incorporates interesting historical material, including aspects on the life of Galois. Computed examples, recent developments, and extensions of results into other related areas round out the presentation.




Analysis for Applied Mathematics


Book Description

This well-written book contains the analytical tools, concepts, and viewpoints needed for modern applied mathematics. It treats various practical methods for solving problems such as differential equations, boundary value problems, and integral equations. Pragmatic approaches to difficult equations are presented, including the Galerkin method, the method of iteration, Newton’s method, projection techniques, and homotopy methods.




The Symmetric Group


Book Description

This book brings together many of the important results in this field. From the reviews: ""A classic gets even better....The edition has new material including the Novelli-Pak-Stoyanovskii bijective proof of the hook formula, Stanley’s proof of the sum of squares formula using differential posets, Fomin’s bijective proof of the sum of squares formula, group acting on posets and their use in proving unimodality, and chromatic symmetric functions." --ZENTRALBLATT MATH




Principles of Random Walk


Book Description

More than 100 pages of examples and problems illustrate and clarify the presentation."--BOOK JACKET.




Harmonic Function Theory


Book Description

This book is about harmonic functions in Euclidean space. This new edition contains a completely rewritten chapter on spherical harmonics, a new section on extensions of Bochers Theorem, new exercises and proofs, as well as revisions throughout to improve the text. A unique software package supplements the text for readers who wish to explore harmonic function theory on a computer.