Structural and Evolutionary Genomics


Book Description

Structural genomics is the study of the DNA of living organisms. Evolutionary genomics is the study of the history of the genome. These subjects are closely interlinked. They are approached in this book using as a guideline the investigations carried out in the author's laboratory, relevant literature is critically reviewed and some general conclusions are presented. The author and his collaborators have studied a vast number of genomes, ranging from prokaryotes to human, using different approaches, including physical chemistry of DNA, viral integration and molecular cytogenetics. As the subtitle indicates the book discusses the fundamental importance of natural selection in shaping genomes. In terms of numbers, neutral and nearly neutral mutations represent most mutations, but a "regional" control is exerted by natural selection (essentially negative or purifying selection). A "neo-selectionist" model is proposed for genome evolution. · Summarizes the existing knowledge on genome organization and evolution in a self-contained book · Discusses important open problem, without refraining from criticism whenever appropriate




Cytogenetics


Book Description

Cytogenetics - Past, Present, and Further Perspectives discusses events that influenced the development of cytogenetics as a specialty within biology, with special attention paid to methodological achievements developed worldwide that have driven the field forward. Improvements to the resolution of chromosome analysis followed closely the introduction of innovative analytical technologies. In that sense, this book reviews and provides a brief account of the structure of chromosomes and stresses the high structural conservation in different species with an emphasis on aspects that require further research. However, it should be kept in mind that the future of cytogenetics will likely depend on improved knowledge of chromosome structure and function.




Cytogenomics


Book Description

Cytogenomics demonstrates that chromosomes are crucial in understanding the human genome and that new high-throughput approaches are central to advancing cytogenetics in the 21st century. After an introduction to (molecular) cytogenetics, being the basic of all cytogenomic research, this book highlights the strengths and newfound advantages of cytogenomic research methods and technologies, enabling researchers to jump-start their own projects and more effectively gather and interpret chromosomal data. Methods discussed include banding and molecular cytogenetics, molecular combing, molecular karyotyping, next-generation sequencing, epigenetic study approaches, optical mapping/karyomapping, and CRISPR-cas9 applications for cytogenomics. The book’s second half demonstrates recent applications of cytogenomic techniques, such as characterizing 3D chromosome structure across different tissue types and insights into multilayer organization of chromosomes, role of repetitive elements and noncoding RNAs in human genome, studies in topologically associated domains, interchromosomal interactions, and chromoanagenesis. This book is an important reference source for researchers, students, basic and translational scientists, and clinicians in the areas of human genetics, genomics, reproductive medicine, gynecology, obstetrics, internal medicine, oncology, bioinformatics, medical genetics, and prenatal testing, as well as genetic counselors, clinical laboratory geneticists, bioethicists, and fertility specialists. Offers applied approaches empowering a new generation of cytogenomic research using a balanced combination of classical and advanced technologies Provides a framework for interpreting chromosome structure and how this affects the functioning of the genome in health and disease Features chapter contributions from international leaders in the field




Plant Cytogenetics


Book Description

This reference book provides information on plant cytogenetics for students, instructors, and researchers. Topics covered by international experts include classical cytogenetics of plant genomes; plant chromosome structure; functional, molecular cytology; and genome dynamics. In addition, chapters are included on several methods in plant cytogenetics, informatics, and even laboratory exercises for aspiring or practiced instructors. The book provides a unique combination of historical and modern subject matter, revealing the central role of plant cytogenetics in plant genetics and genomics as currently practiced. This breadth of coverage, together with the inclusion of methods and instruction, is intended to convey a deep and useful appreciation for plant cytogenetics. We hope it will inform and inspire students, researchers, and teachers to continue to employ plant cytogenetics to address fundamental questions about the cytology of plant chromosomes and genomes for years to come. Hank W. Bass is a Professor in the Department of Biological Science at Florida State University. James A. Birchler is a Professor in the Division of Biological Sciences at the University of Missouri.




Chromosome Structure and Aberrations


Book Description

This book is a compilation of various chapters contributed by a group of leading researchers from different countries and covering up to date information based on published reports and personal experience of authors in the field of cytogenetics. Beginning with the introduction of chromosome, the subsequent chapters on organization of genetic material, karyotype evolution, structural and numerical variations in chromosomes, B-chromosomes and chromosomal aberrations provide an in-depth knowledge and easy understanding of the subject matter. A special feature of the book is the inclusion of a series of chapters on various types of chromosomal aberrations and their impact on breeding behaviour and crop improvement. The possible mechanism, their consequences and role in genetic analysis has been emphasized in these chapters. A few chapters have also been dedicated on various techniques routinely used in the laboratory by students and researchers. Each chapter ends with an extensive bibliography so that the students and researchers may find it relevant to consult more literature on the subject than a book of this size can offer. The book is intended to fulfill the needs of undergraduate and post graduate students of botany, zoology and agriculture besides, teachers and researchers engaged in the field of genetics, cytogenetics, and molecular genetics. In general the readers will find each chapter of the book informative and easy to understand.




Advances in Molecular Cytogenetics


Book Description

The field of molecular cytogenetics is concerned with the combination of the fields of cytogenetics and molecular biology, to distinguish normal cells from cancer-causing cells. It is a useful tool for the diagnosis and treatment of malignancies of the brain, blood, etc. Novel techniques known as fluorescence in situ hybridization (FISH) are used for molecular cytogenetic studies. These have DNA labeled with uniquely colored fluorescent tags to image specific regions of the genome. Molecular cytogenetic techniques are crucial for the understanding of the structural and functional organization of the nucleus and the chromosome, genome variation, gene expression and evolution. These also give insight into the contribution of genomic variations and chromosomal abnormalities to tumor genetics and medical genetics. This book is a compilation of chapters that discuss the most vital concepts and emerging trends in the field of molecular cytogenetics. It is an upcoming field of science that has undergone rapid development over the past few decades. Students, researchers, experts and all associated with this field will benefit alike from this book.




Genome Evolution


Book Description




Cytogenetics, Evolution and Biostatistics


Book Description

For Degree level Students




The Rye Genome


Book Description

This book celebrates the dawn of the rye genomics era with concise, comprehensive, and accessible reviews on the current state of rye genomic research, written by experts in the field for students, researchers and growers. To most, rye is the key ingredient in a flavoursome bread or their favourite American whisky. To a farmer, rye is the remarkable grain that tolerates the harshest winters and the most unforgiving soils, befitting its legacy as the life-giving seed that fed the ancient civilisations of northern Eurasia. Since the mid-1900s, scientists have employed genetic approaches to better understand and utilize rye, but only since the technological advances of the mid-2010s has the possibility of addressing questions using rye genome assemblies become a reality. Alongside the secret of its unique survival abilities, rye genomics has accelerated research on a host of intriguing topics such as the complex history of rye’s domestication by humans, the nature of genes that switch fertility on and off, the function and origin of accessory chromosomes, and the evolution of selfish DNA.