D'oh! Fourier: Theory, Applications, And Derivatives


Book Description

D'oh! Fourier introduces the Fourier transform and is aimed at undergraduates in Computer Science, Mathematics, and Applied Sciences, as well as for those wishing to extend their education. Formulated around ten key points, this accessible book is light-hearted and illustrative, with many applications. The basis and deployment of the Fourier transform are covered applying real-world examples throughout inductively rather than the theoretical approach deductively.The key components of the textbook are continuous signals analysis, discrete signals analysis, image processing, applications of Fourier analysis, together with the origin and nature of the transform itself. D'oh! Fourier is reproducible via MATLAB/Octave and is supported by a comprehensive website which provides the code contained within the book.




Classical Fourier Analysis


Book Description

The primary goal of this text is to present the theoretical foundation of the field of Fourier analysis. This book is mainly addressed to graduate students in mathematics and is designed to serve for a three-course sequence on the subject. The only prerequisite for understanding the text is satisfactory completion of a course in measure theory, Lebesgue integration, and complex variables. This book is intended to present the selected topics in some depth and stimulate further study. Although the emphasis falls on real variable methods in Euclidean spaces, a chapter is devoted to the fundamentals of analysis on the torus. This material is included for historical reasons, as the genesis of Fourier analysis can be found in trigonometric expansions of periodic functions in several variables. While the 1st edition was published as a single volume, the new edition will contain 120 pp of new material, with an additional chapter on time-frequency analysis and other modern topics. As a result, the book is now being published in 2 separate volumes, the first volume containing the classical topics (Lp Spaces, Littlewood-Paley Theory, Smoothness, etc...), the second volume containing the modern topics (weighted inequalities, wavelets, atomic decomposition, etc...). From a review of the first edition: “Grafakos’s book is very user-friendly with numerous examples illustrating the definitions and ideas. It is more suitable for readers who want to get a feel for current research. The treatment is thoroughly modern with free use of operators and functional analysis. Morever, unlike many authors, Grafakos has clearly spent a great deal of time preparing the exercises.” - Ken Ross, MAA Online







Advanced Calculus (Revised Edition)


Book Description

An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.




Feature Extraction and Image Processing


Book Description

Focusing on feature extraction while also covering issues and techniques such as image acquisition, sampling theory, point operations and low-level feature extraction, the authors have a clear and coherent approach that will appeal to a wide range of students and professionals. - Ideal module text for courses in artificial intelligence, image processing and computer vision - Essential reading for engineers and academics working in this cutting-edge field - Supported by free software on a companion website




Concise Handbook Of Analytical Spectroscopy, The: Theory, Applications, And Reference Materials (In 5 Volumes)


Book Description

The concept of improving the use of electromagnetic energy to achieve a variety of qualitative and quantitative spectroscopic measurements on solid and liquid materials has been proliferating at a rapid rate. The use of such technologies to measure chemical composition, appearance, for classification, and to achieve detailed understanding of material interactions has prompted a dramatic expansion in the use and development of spectroscopic techniques over a variety of academic and commercial fields.The Concise Handbook of Analytical Spectroscopy is integrated into 5 volumes, each covering the theory, instrumentation, sampling methods, experimental design, and data analysis techniques, as well as essential reference tables, figures, and spectra for each spectroscopic region. The detailed practical aspects of applying spectroscopic tools for many of the most exciting and current applications are covered. Featured applications include: medical, biomedical, optical, physics, common commercial analysis methods, spectroscopic quantitative and qualitative techniques, and advanced methods.This multi-volume handbook is designed specifically as a reference tool for students, commercial development and quality scientists, and researchers or technologists in a variety of measurement endeavours.Number of Illustrations and Tables: 393 b/w illus., 304 colour illus, 413 tables.Related Link(s)




Mathematical Reviews


Book Description




Recent Advances in Operator Theory and Its Applications


Book Description

This book contains a selection of carefully refereed research papers, most of which were presented at the fourteenth International Workshop on Operator Theory and its Applications (IWOTA), held at Cagliari, Italy, from June 24-27, 2003. The papers, many of which have been written by leading experts in the field, concern a wide variety of topics in modern operator theory and applications, with emphasis on differential operators and numerical methods. The book will be of interest to a wide audience of pure and applied mathematicians and engineers.




Introductory Functional Analysis with Applications


Book Description

KREYSZIG The Wiley Classics Library consists of selected books originally published by John Wiley & Sons that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: Emil Artin Geometnc Algebra R. W. Carter Simple Groups Of Lie Type Richard Courant Differential and Integrai Calculus. Volume I Richard Courant Differential and Integral Calculus. Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics. Volume II Harold M. S. Coxeter Introduction to Modern Geometry. Second Edition Charles W. Curtis, Irving Reiner Representation Theory of Finite Groups and Associative Algebras Nelson Dunford, Jacob T. Schwartz unear Operators. Part One. General Theory Nelson Dunford. Jacob T. Schwartz Linear Operators, Part Two. Spectral Theory—Self Adjant Operators in Hilbert Space Nelson Dunford, Jacob T. Schwartz Linear Operators. Part Three. Spectral Operators Peter Henrici Applied and Computational Complex Analysis. Volume I—Power Senes-lntegrauon-Contormal Mapping-Locatvon of Zeros Peter Hilton, Yet-Chiang Wu A Course in Modern Algebra Harry Hochstadt Integral Equations Erwin Kreyszig Introductory Functional Analysis with Applications P. M. Prenter Splines and Variational Methods C. L. Siegel Topics in Complex Function Theory. Volume I —Elliptic Functions and Uniformizatton Theory C. L. Siegel Topics in Complex Function Theory. Volume II —Automorphic and Abelian Integrals C. L. Siegel Topics In Complex Function Theory. Volume III —Abelian Functions & Modular Functions of Several Variables J. J. Stoker Differential Geometry




Partial Differential Equations and Spectral Theory


Book Description

The intention of the international conference PDE2000 was to bring together specialists from different areas of modern analysis, mathematical physics and geometry, to discuss not only the recent progress in their own fields but also the interaction between these fields. The special topics of the conference were spectral and scattering theory, semiclassical and asymptotic analysis, pseudodifferential operators and their relation to geometry, as well as partial differential operators and their connection to stochastic analysis and to the theory of semigroups. The scientific advisory board of the conference in Clausthal consisted of M. Ben-Artzi (Jerusalem), Chen Hua (Peking), M. Demuth (Clausthal), T. Ichinose (Kanazawa), L. Rodino (Turin), B.-W. Schulze (Potsdam) and J. Sjöstrand (Paris). The book is aimed at researchers in mathematics and mathematical physics with interests in partial differential equations and all its related fields.