DAFX - Digital Audio Effects


Book Description

* Digital Audio Effects (DAFX) covers the use of digital signal processing and its applications to sounds * Discusses digital audio effects from both an introductory level, for musicians, and an advanced level, for signal processing engineers * Explains what can be done in the digital processing of sounds in the form of computer algorithms and sound examples resulting from these transformations * Brings together essential DSP algorithms for sound processing, providing an excellent introduction to the topic




DAFX


Book Description

The rapid development in various fields of Digital Audio Effects, or DAFX, has led to new algorithms and this second edition of the popular book, DAFX: Digital Audio Effects has been updated throughout to reflect progress in the field. It maintains a unique approach to DAFX with a lecture-style introduction into the basics of effect processing. Each effect description begins with the presentation of the physical and acoustical phenomena, an explanation of the signal processing techniques to achieve the effect, followed by a discussion of musical applications and the control of effect parameters. Topics covered include: filters and delays, modulators and demodulators, nonlinear processing, spatial effects, time-segment processing, time-frequency processing, source-filter processing, spectral processing, time and frequency warping musical signals. Updates to the second edition include: Three completely new chapters devoted to the major research areas of: Virtual Analog Effects, Automatic Mixing and Sound Source Separation, authored by leading researchers in the field . Improved presentation of the basic concepts and explanation of the related technology. Extended coverage of the MATLABTM scripts which demonstrate the implementation of the basic concepts into software programs. Companion website (www.dafx.de) which serves as the download source for MATLABTM scripts, will be updated to reflect the new material in the book. Discussing DAFX from both an introductory and advanced level, the book systematically introduces the reader to digital signal processing concepts, how they can be applied to sound and their use in musical effects. This makes the book suitable for a range of professionals including those working in audio engineering, as well as researchers and engineers involved in the area of digital signal processing along with students on multimedia related courses.




Explorations in Time-Frequency Analysis


Book Description

Understand the methods of modern non-stationary signal processing with authoritative insights from a leader in the field.




The Audio Programming Book


Book Description

An encyclopedic handbook on audio programming for students and professionals, with many cross-platform open source examples and a DVD covering advanced topics. This comprehensive handbook of mathematical and programming techniques for audio signal processing will be an essential reference for all computer musicians, computer scientists, engineers, and anyone interested in audio. Designed to be used by readers with varying levels of programming expertise, it not only provides the foundations for music and audio development but also tackles issues that sometimes remain mysterious even to experienced software designers. Exercises and copious examples (all cross-platform and based on free or open source software) make the book ideal for classroom use. Fifteen chapters and eight appendixes cover such topics as programming basics for C and C++ (with music-oriented examples), audio programming basics and more advanced topics, spectral audio programming; programming Csound opcodes, and algorithmic synthesis and music programming. Appendixes cover topics in compiling, audio and MIDI, computing, and math. An accompanying DVD provides an additional 40 chapters, covering musical and audio programs with micro-controllers, alternate MIDI controllers, video controllers, developing Apple Audio Unit plug-ins from Csound opcodes, and audio programming for the iPhone. The sections and chapters of the book are arranged progressively and topics can be followed from chapter to chapter and from section to section. At the same time, each section can stand alone as a self-contained unit. Readers will find The Audio Programming Book a trustworthy companion on their journey through making music and programming audio on modern computers.




Digital Audio Signal Processing


Book Description

Digital Audio Signal Processing The fully revised new edition of the popular textbook, featuring additional MATLAB exercises and new algorithms for processing digital audio signals Digital Audio Signal Processing (DASP) techniques are used in a variety of applications, ranging from audio streaming and computer-generated music to real-time signal processing and virtual sound processing. Digital Audio Signal Processing provides clear and accessible coverage of the fundamental principles and practical applications of digital audio processing and coding. Throughout the book, the authors explain a wide range of basic audio processing techniques and highlight new directions for automatic tuning of different algorithms and discuss state- of-the-art DASP approaches. Now in its third edition, this popular guide is fully updated with the latest signal processing algorithms for audio processing. Entirely new chapters cover nonlinear processing, Machine Learning (ML) for audio applications, distortion, soft/hard clipping, overdrive, equalizers and delay effects, sampling and reconstruction, and more. Covers the fundamentals of quantization, filters, dynamic range control, room simulation, sampling rate conversion, and audio coding Describes DASP techniques, their theoretical foundations, and their practical applications Discusses modern studio technology, digital transmission systems, storage media, and home entertainment audio components Features a new introductory chapter and extensively revised content throughout Provides updated application examples and computer-based activities supported with MATLAB exercises and interactive JavaScript applets via an author-hosted companion website Balancing essential concepts and technological topics, Digital Audio Signal Processing, Third Edition remains the ideal textbook for advanced music technology and engineering students in audio signal processing courses. It is also an invaluable reference for audio engineers, hardware and software developers, and researchers in both academia and industry.







Dr. Dobb's Journal


Book Description




Digital Audio Processing


Book Description

Digital techniques for processing sound described in accessible language! C++ programmers involved in digital signal processing (DSP) for telephony, audio, video and user interface development will learn how to achieve: - Normal effects to replicate natur




An Introduction to Digital Audio


Book Description

First Published in 2002. Routledge is an imprint of Taylor & Francis, an informa company.




Partitioned convolution algorithms for real-time auralization


Book Description

This work discusses methods for efficient audio processing with finite impulse response (FIR) filters. Such filters are widely used for high-quality acoustic signal processing, e.g. for headphone or loudspeaker equalization, in binaural synthesis, in spatial sound reproduction techniques and for the auralization of reverberant environments. This work focuses on real-time applications, where the audio processing is subject to minimal delays (latencies). Different fast convolution concepts (transform-based, interpolation-based and number-theoretic), which are used to implement FIR filters efficiently, are examined regarding their applicability in real-time. These fast, elementary techniques can be further improved by the concept of partitioned convolution. This work introduces a classification and a general framework for partitioned convolution algorithms and analyzes the algorithmic classes which are relevant for real-time filtering: Elementary concepts which do not partition the filter impulse response (e.g. regular Overlap-Add and Overlap-Save convolution) and advanced techniques, which partition filters uniformly and non-uniformly. The algorithms are thereby regarded in their analytic complexity, their performance on target hardware, the optimal choice of parameters, assemblies of multiple filters, multi-channel processing and the exchange of filter impulse responses without audible artifacts. Suitable convolution techniques are identified for different types of audio applications, ranging from resource-aware auralizations on mobile devices to extensive room acoustics audio rendering using dedicated multi-processor systems.