Damping Capacity


Book Description




Damping Capacity


Book Description




Damping Capacity of Metals


Book Description







Bulletin


Book Description




Composite Materials


Book Description

The first edition of "Composite Materials" introduced a new way of looking at composite materials. This second edition expands the book’s scope to emphasize application-driven and process-oriented materials development. The approach is vibrant yet functional.




Structural Damping


Book Description

Rapid advances have been made during the past few decades in earthquake response modification technologies for structures, most notably in base isolation and energy dissipation systems. Many practical applications of various dampers can be found worldwide and, in the United States, damper design has been included in building codes. The current desi




PRICM-5


Book Description

PRICM-5 Proceedings of the 5th Pacific Rim International Conference on Advanced Materials and Processing




Vibration Damping, Control, and Design


Book Description

Reducing and controlling the level of vibration in a mechanical system leads to an improved work environment and product quality, reduced noise, more economical operation, and longer equipment life. Adequate design is essential for reducing vibrations, while damping and control methods help further reduce and manipulate vibrations when design strat




Smart Structures Theory


Book Description

The twenty-first century could be called the 'Multifunctional Materials Age'. The inspiration for multifunctional materials comes from nature, and therefore these are often referred to as bio-inspired materials. Bio-inspired materials encompass smart materials and structures, multifunctional materials and nano-structured materials. This is a dawn of revolutionary materials that may provide a 'quantum jump' in performance and multi-capability. This book focuses on smart materials, structures and systems, which are also referred to as intelligent, adaptive, active, sensory and metamorphic. The purpose of these materials from the perspective of smart systems is their ability to minimize life-cycle cost and/or expand the performance envelope. The ultimate goal is to develop biologically inspired multifunctional materials with the capability to adapt their structural characteristics (such as stiffness, damping and viscosity) as required, monitor their health condition, perform self-diagnosis and self-repair, morph their shape and undergo significant controlled motion over a wide range of operating conditions.