Research Methods and Data Analysis for Business Decisions


Book Description

This introductory textbook presents research methods and data analysis tools in non-technical language. It explains the research process and the basics of qualitative and quantitative data analysis, including procedures and methods, analysis, interpretation, and applications using hands-on data examples in QDA Miner Lite and IBM SPSS Statistics software. The book is divided into four parts that address study and research design; data collection, qualitative methods and surveys; statistical methods, including hypothesis testing, regression, cluster and factor analysis; and reporting. The intended audience is business and social science students learning scientific research methods, however, given its business context, the book will be equally useful for decision-makers in businesses and organizations.




Data Analysis for Business, Economics, and Policy


Book Description

A comprehensive textbook on data analysis for business, applied economics and public policy that uses case studies with real-world data.




Data Analysis for Business Decision Making


Book Description

Teaching the statistical analysis skills needed to support business decisions, this book provides projects ranging from the most basic descriptive analytical techniques to more advanced techniques such as linear regression, forecasting, inferential statistics, and more. --




Data Analysis for Business Decisions


Book Description

This laboratory manual is intended for business analysts who wish to increase their skills in the use of statistical analysis to support business decisions. Most of the case studies use Excel, today's most common analysis tool. They range from the most basic descriptive analytical techniques to more advanced techniques such as linear regression and forecasting. Advanced projects cover inferential statistics for continuous variables (t-Test) and categorical variables (chi-square), as well as A/B testing. The manual ends with techniques to deal with the analysis of text data and tools to manage the analysis of large data sets (Big Data) using Excel. Includes companion files with solution spreadsheets, sample files, data sets, etc. from the book. Features: Teaches the statistical analysis skills needed to support business decisions Provides projects ranging from the most basic descriptive analytical techniques to more advanced techniques such as linear regression, forecasting, inferential statistics, and analyzing big data sets Includes companion files with solution spreadsheets, sample files, data sets, etc. used in the book's case studies The companion files are available online by emailing the publisher with proof of purchase at [email protected].




Data-Driven Business Decisions


Book Description

A hands-on guide to the use of quantitative methods and software for making successful business decisions The appropriate use of quantitative methods lies at the core of successful decisions made by managers, researchers, and students in the field of business. Providing a framework for the development of sound judgment and the ability to utilize quantitative and qualitative approaches, Data Driven Business Decisions introduces readers to the important role that data plays in understanding business outcomes, addressing four general areas that managers need to know about: data handling and Microsoft Excel, uncertainty, the relationship between inputs and outputs, and complex decisions with trade-offs and uncertainty. Grounded in the author's own classroom approach to business statistics, the book reveals how to use data to understand the drivers of business outcomes, which in turn allows for data-driven business decisions. A basic, non-mathematical foundation in statistics is provided, outlining for readers the tools needed to link data with business decisions; account for uncertainty in the actions of others and in patterns revealed by data; handle data in Excel; translate their analysis into simple business terms; and present results in simple tables and charts. The author discusses key data analytic frameworks, such as decision trees and multiple regression, and also explores additional topics, including: Use of the Excel® functions Solver and Goal Seek Partial correlation and auto-correlation Interactions and proportional variation in regression models Seasonal adjustment and what it reveals Basic portfolio theory as an introduction to correlations Chapters are introduced with case studies that integrate simple ideas into the larger business context, and are followed by further details, raw data, and motivating insights. Algebraic notation is used only when necessary, and throughout the book, the author utilizes real-world examples from diverse areas such as market surveys, finance, economics, and business ethics. Excel® add-ins StatproGo and TreePlan are showcased to demonstrate execution of the techniques, and a related website features extensive programming instructions as well as insights, data sets, and solutions to problems included in the material. Data Driven Business Decisions is an excellent book for MBA quantitative analysis courses or undergraduate general statistics courses. It also serves as a valuable reference for practicing MBAs and practitioners in the fields of statistics, business, and finance.




Business Intelligence


Book Description

This book is about using business intelligence as a management information system for supporting managerial decision making. It concentrates primarily on practical business issues and demonstrates how to apply data warehousing and data analytics to support business decision making. This book progresses through a logical sequence, starting with data model infrastructure, then data preparation, followed by data analysis, integration, knowledge discovery, and finally the actual use of discovered knowledge. All examples are based on the most recent achievements in business intelligence. Finally this book outlines an overview of a methodology that takes into account the complexity of developing applications in an integrated business intelligence environment. This book is written for managers, business consultants, and undergraduate and postgraduates students in business administration.




Analytics at Work


Book Description

As a follow-up to the successful Competing on Analytics, authors Tom Davenport, Jeanne Harris, and Robert Morison provide practical frameworks and tools for all companies that want to use analytics as a basis for more effective and more profitable decision making. Regardless of your company's strategy, and whether or not analytics are your company's primary source of competitive differentiation, this book is designed to help you assess your organization's analytical capabilities, provide the tools to build these capabilities, and put analytics to work. The book helps you answer these pressing questions: What assets do I need in place in my organization in order to use analytics to run my business? Once I have these assets, how do I deploy them to get the most from an analytic approach? How do I get an analytic initiative off the ground in the first place, and then how do I sustain analytics in my organization over time? Packed with tools, frameworks, and all new examples, Analytics at Work makes analytics understandable and accessible and teaches you how to make your company more analytical.




Business Analytics for Decision Making


Book Description

Business Analytics for Decision Making, the first complete text suitable for use in introductory Business Analytics courses, establishes a national syllabus for an emerging first course at an MBA or upper undergraduate level. This timely text is mainly about model analytics, particularly analytics for constrained optimization. It uses implementations that allow students to explore models and data for the sake of discovery, understanding, and decision making. Business analytics is about using data and models to solve various kinds of decision problems. There are three aspects for those who want to make the most of their analytics: encoding, solution design, and post-solution analysis. This textbook addresses all three. Emphasizing the use of constrained optimization models for decision making, the book concentrates on post-solution analysis of models. The text focuses on computationally challenging problems that commonly arise in business environments. Unique among business analytics texts, it emphasizes using heuristics for solving difficult optimization problems important in business practice by making best use of methods from Computer Science and Operations Research. Furthermore, case studies and examples illustrate the real-world applications of these methods. The authors supply examples in Excel®, GAMS, MATLAB®, and OPL. The metaheuristics code is also made available at the book's website in a documented library of Python modules, along with data and material for homework exercises. From the beginning, the authors emphasize analytics and de-emphasize representation and encoding so students will have plenty to sink their teeth into regardless of their computer programming experience.




Data Science for Business and Decision Making


Book Description

Data Science for Business and Decision Making covers both statistics and operations research while most competing textbooks focus on one or the other. As a result, the book more clearly defines the principles of business analytics for those who want to apply quantitative methods in their work. Its emphasis reflects the importance of regression, optimization and simulation for practitioners of business analytics. Each chapter uses a didactic format that is followed by exercises and answers. Freely-accessible datasets enable students and professionals to work with Excel, Stata Statistical Software®, and IBM SPSS Statistics Software®. - Combines statistics and operations research modeling to teach the principles of business analytics - Written for students who want to apply statistics, optimization and multivariate modeling to gain competitive advantages in business - Shows how powerful software packages, such as SPSS and Stata, can create graphical and numerical outputs




Business Analytics


Book Description