Data Analysis for Omic Sciences: Methods and Applications


Book Description

Data Analysis for Omic Sciences: Methods and Applications, Volume 82, shows how these types of challenging datasets can be analyzed. Examples of applications in real environmental, clinical and food analysis cases help readers disseminate these approaches. Chapters of note include an Introduction to Data Analysis Relevance in the Omics Era, Omics Experimental Design and Data Acquisition, Microarrays Data, Analysis of High-Throughput RNA Sequencing Data, Analysis of High-Throughput DNA Bisulfite Sequencing Data, Data Quality Assessment in Untargeted LC-MS Metabolomic, Data Normalization and Scaling, Metabolomics Data Preprocessing, and more. - Presents the best reference book for omics data analysis - Provides a review of the latest trends in transcriptomics and metabolomics data analysis tools - Includes examples of applications in research fields, such as environmental, biomedical and food analysis




Bioinformatics and Biomarker Discovery


Book Description

This book is designed to introduce biologists, clinicians and computational researchers to fundamental data analysis principles, techniques and tools for supporting the discovery of biomarkers and the implementation of diagnostic/prognostic systems. The focus of the book is on how fundamental statistical and data mining approaches can support biomarker discovery and evaluation, emphasising applications based on different types of "omic" data. The book also discusses design factors, requirements and techniques for disease screening, diagnostic and prognostic applications. Readers are provided with the knowledge needed to assess the requirements, computational approaches and outputs in disease biomarker research. Commentaries from guest experts are also included, containing detailed discussions of methodologies and applications based on specific types of "omic" data, as well as their integration. Covers the main range of data sources currently used for biomarker discovery Covers the main range of data sources currently used for biomarker discovery Puts emphasis on concepts, design principles and methodologies that can be extended or tailored to more specific applications Offers principles and methods for assessing the bioinformatic/biostatistic limitations, strengths and challenges in biomarker discovery studies Discusses systems biology approaches and applications Includes expert chapter commentaries to further discuss relevance of techniques, summarize biological/clinical implications and provide alternative interpretations




Bioinformatics for Omics Data


Book Description

Presenting an area of research that intersects with and integrates diverse disciplines, Bioinformatics for Omics Data: Methods and Protocols collects contributions from expert researchers in order to provide practical guidelines to this complex study.




Evolution of Translational Omics


Book Description

Technologies collectively called omics enable simultaneous measurement of an enormous number of biomolecules; for example, genomics investigates thousands of DNA sequences, and proteomics examines large numbers of proteins. Scientists are using these technologies to develop innovative tests to detect disease and to predict a patient's likelihood of responding to specific drugs. Following a recent case involving premature use of omics-based tests in cancer clinical trials at Duke University, the NCI requested that the IOM establish a committee to recommend ways to strengthen omics-based test development and evaluation. This report identifies best practices to enhance development, evaluation, and translation of omics-based tests while simultaneously reinforcing steps to ensure that these tests are appropriately assessed for scientific validity before they are used to guide patient treatment in clinical trials.




Statistical Analysis of Proteomics, Metabolomics, and Lipidomics Data Using Mass Spectrometry


Book Description

This book presents an overview of computational and statistical design and analysis of mass spectrometry-based proteomics, metabolomics, and lipidomics data. This contributed volume provides an introduction to the special aspects of statistical design and analysis with mass spectrometry data for the new omic sciences. The text discusses common aspects of design and analysis between and across all (or most) forms of mass spectrometry, while also providing special examples of application with the most common forms of mass spectrometry. Also covered are applications of computational mass spectrometry not only in clinical study but also in the interpretation of omics data in plant biology studies. Omics research fields are expected to revolutionize biomolecular research by the ability to simultaneously profile many compounds within either patient blood, urine, tissue, or other biological samples. Mass spectrometry is one of the key analytical techniques used in these new omic sciences. Liquid chromatography mass spectrometry, time-of-flight data, and Fourier transform mass spectrometry are but a selection of the measurement platforms available to the modern analyst. Thus in practical proteomics or metabolomics, researchers will not only be confronted with new high dimensional data types—as opposed to the familiar data structures in more classical genomics—but also with great variation between distinct types of mass spectral measurements derived from different platforms, which may complicate analyses, comparison, and interpretation of results.




Foodomics


Book Description

Presenting an up-to-date review of the state-of-the-art and main applications of omics technologies to current hot topics in food sciences, this book is divided into four convenient sections. The first section represents an introduction to the development of foodomics and will provide a general overview of DNA-based and protein-based methods. The second section is focused on the main applications of omics to food safety issues, such as chemical hazards, foodborne pathogens, phages, food authentication or GMO detection. The third section is focused on specific food groups and how omics have revolutionized the investigation of dairy and meat products, seafood, agricultural and fermented food products. Finally, the fourth section is devoted to the link between foodomics and health: hot topics such as nutrimetabolomics, food allergy or probiotics are reviewed here. The book brings together work from top international scientists to produce the most significant academic book for some years on omics and food for a broad audience. It presents unique features not covered so far by other books, such as a detailed description of different strategies and applications of omics techniques to many food sectors and provides a welcome addition to the cutting-edge literature in this area for researchers and professionals in food science and food chemistry.




Big Data in Omics and Imaging


Book Description

Big Data in Omics and Imaging: Integrated Analysis and Causal Inference addresses the recent development of integrated genomic, epigenomic and imaging data analysis and causal inference in big data era. Despite significant progress in dissecting the genetic architecture of complex diseases by genome-wide association studies (GWAS), genome-wide expression studies (GWES), and epigenome-wide association studies (EWAS), the overall contribution of the new identified genetic variants is small and a large fraction of genetic variants is still hidden. Understanding the etiology and causal chain of mechanism underlying complex diseases remains elusive. It is time to bring big data, machine learning and causal revolution to developing a new generation of genetic analysis for shifting the current paradigm of genetic analysis from shallow association analysis to deep causal inference and from genetic analysis alone to integrated omics and imaging data analysis for unraveling the mechanism of complex diseases. FEATURES Provides a natural extension and companion volume to Big Data in Omic and Imaging: Association Analysis, but can be read independently. Introduce causal inference theory to genomic, epigenomic and imaging data analysis Develop novel statistics for genome-wide causation studies and epigenome-wide causation studies. Bridge the gap between the traditional association analysis and modern causation analysis Use combinatorial optimization methods and various causal models as a general framework for inferring multilevel omic and image causal networks Present statistical methods and computational algorithms for searching causal paths from genetic variant to disease Develop causal machine learning methods integrating causal inference and machine learning Develop statistics for testing significant difference in directed edge, path, and graphs, and for assessing causal relationships between two networks The book is designed for graduate students and researchers in genomics, epigenomics, medical image, bioinformatics, and data science. Topics covered are: mathematical formulation of causal inference, information geometry for causal inference, topology group and Haar measure, additive noise models, distance correlation, multivariate causal inference and causal networks, dynamic causal networks, multivariate and functional structural equation models, mixed structural equation models, causal inference with confounders, integer programming, deep learning and differential equations for wearable computing, genetic analysis of function-valued traits, RNA-seq data analysis, causal networks for genetic methylation analysis, gene expression and methylation deconvolution, cell –specific causal networks, deep learning for image segmentation and image analysis, imaging and genomic data analysis, integrated multilevel causal genomic, epigenomic and imaging data analysis.




Comprehensive Chemometrics


Book Description

Designed to serve as the first point of reference on the subject, Comprehensive Chemometrics presents an integrated summary of the present state of chemical and biochemical data analysis and manipulation. The work covers all major areas ranging from statistics to data acquisition, analysis, and applications. This major reference work provides broad-ranging, validated summaries of the major topics in chemometrics—with chapter introductions and advanced reviews for each area. The level of material is appropriate for graduate students as well as active researchers seeking a ready reference on obtaining and analyzing scientific data. Features the contributions of leading experts from 21 countries, under the guidance of the Editors-in-Chief and a team of specialist Section Editors: L. Buydens; D. Coomans; P. Van Espen; A. De Juan; J.H. Kalivas; B.K. Lavine; R. Leardi; R. Phan-Tan-Luu; L.A. Sarabia; and J. Trygg Examines the merits and limitations of each technique through practical examples and extensive visuals: 368 tables and more than 1,300 illustrations (750 in full color) Integrates coverage of chemical and biological methods, allowing readers to consider and test a range of techniques Consists of 2,200 pages and more than 90 review articles, making it the most comprehensive work of its kind Offers print and online purchase options, the latter of which delivers flexibility, accessibility, and usability through the search tools and other productivity-enhancing features of ScienceDirect




Integrating Omics Data


Book Description

Tutorial chapters by leaders in the field introduce state-of-the-art methods to handle information integration problems of omics data.




Health Informatics Data Analysis


Book Description

This book provides a comprehensive overview of different biomedical data types, including both clinical and genomic data. Thorough explanations enable readers to explore key topics ranging from electrocardiograms to Big Data health mining and EEG analysis techniques. Each chapter offers a summary of the field and a sample analysis. Also covered are telehealth infrastructure, healthcare information association rules, methods for mass spectrometry imaging, environmental biodiversity, and the global nonlinear fitness function for protein structures. Diseases are addressed in chapters on functional annotation of lncRNAs in human disease, metabolomics characterization of human diseases, disease risk factors using SNP data and Bayesian methods, and imaging informatics for diagnostic imaging marker selection. With the exploding accumulation of Electronic Health Records (EHRs), there is an urgent need for computer-aided analysis of heterogeneous biomedical datasets. Biomedical data is notorious for its diversified scales, dimensions, and volumes, and requires interdisciplinary technologies for visual illustration and digital characterization. Various computer programs and servers have been developed for these purposes by both theoreticians and engineers. This book is an essential reference for investigating the tools available for analyzing heterogeneous biomedical data. It is designed for professionals, researchers, and practitioners in biomedical engineering, diagnostics, medical electronics, and related industries.