Compositional Data Analysis in the Geosciences


Book Description

Since Karl Pearson wrote his paper on spurious correlation in 1897, a lot has been said about the statistical analysis of compositional data, mainly by geologists such as Felix Chayes. The solution appeared in the 1980s, when John Aitchison proposed to use Iogratios. Since then, the approach has seen a great expansion, mainly building on the idea of the `natural geometry' of the sample space. Statistics is expected to give sense to our perception of the natural scale of the data, and this is made possible for compositional data using Iogratios. This publication will be a milestone in this process.




Quantitative Geosciences: Data Analytics, Geostatistics, Reservoir Characterization and Modeling


Book Description

Earth science is becoming increasingly quantitative in the digital age. Quantification of geoscience and engineering problems underpins many of the applications of big data and artificial intelligence. This book presents quantitative geosciences in three parts. Part 1 presents data analytics using probability, statistical and machine-learning methods. Part 2 covers reservoir characterization using several geoscience disciplines: including geology, geophysics, petrophysics and geostatistics. Part 3 treats reservoir modeling, resource evaluation and uncertainty analysis using integrated geoscience, engineering and geostatistical methods. As the petroleum industry is heading towards operating oil fields digitally, a multidisciplinary skillset is a must for geoscientists who need to use data analytics to resolve inconsistencies in various sources of data, model reservoir properties, evaluate uncertainties, and quantify risk for decision making. This book intends to serve as a bridge for advancing the multidisciplinary integration for digital fields. The goal is to move beyond using quantitative methods individually to an integrated descriptive-quantitative analysis. In big data, everything tells us something, but nothing tells us everything. This book emphasizes the integrated, multidisciplinary solutions for practical problems in resource evaluation and field development.




Compositional Data Analysis


Book Description

It is difficult to imagine that the statistical analysis of compositional data has been a major issue of concern for more than 100 years. It is even more difficult to realize that so many statisticians and users of statistics are unaware of the particular problems affecting compositional data, as well as their solutions. The issue of ``spurious correlation'', as the situation was phrased by Karl Pearson back in 1897, affects all data that measures parts of some whole, such as percentages, proportions, ppm and ppb. Such measurements are present in all fields of science, ranging from geology, biology, environmental sciences, forensic sciences, medicine and hydrology. This book presents the history and development of compositional data analysis along with Aitchison's log-ratio approach. Compositional Data Analysis describes the state of the art both in theoretical fields as well as applications in the different fields of science. Key Features: Reflects the state-of-the-art in compositional data analysis. Gives an overview of the historical development of compositional data analysis, as well as basic concepts and procedures. Looks at advances in algebra and calculus on the simplex. Presents applications in different fields of science, including, genomics, ecology, biology, geochemistry, planetology, chemistry and economics. Explores connections to correspondence analysis and the Dirichlet distribution. Presents a summary of three available software packages for compositional data analysis. Supported by an accompanying website featuring R code. Applied scientists working on compositional data analysis in any field of science, both in academia and professionals will benefit from this book, along with graduate students in any field of science working with compositional data.




Statistics and Data Analysis in Geology


Book Description

Special Features: · Offers a comprehensive treatment of statistics in geology.· Topics progress from background information to analysis of geological sequences, then maps, and finally multivariate observations.· The book places special emphasis on probability and statistics, including nonparametric statistics, constant-sum data, eigenvalue calculations, analysis of directional data, mapping and geostatistics, fractals, and multivariate analysis.· The text now includes numerous geological data sets that illustrate how specific computational procedures can be applied to problems in the Earth sciences. All data sets are available on the book's companion Web site.· Each chapter now ends with a set of exercises of greater or lesser complexity that the student can address using methods discussed in the chapter.· Provides expanded coverage of elementary probability theory.· The discussion of nonparametric methods has been expanded to address closure effects.· Coverage of eigenvalues and eigenvectors has been revised.· Includes a new section on singular value decomposition and the relationship between R- and Q-mode factor methods in the chapter on multivariate analysis.· The section on contour mapping has been revised to reflect modern practices.· Includes revised coverage of the many varieties of kriging and provides of series of simple demonstrations that illustrate how geostatistical methodologies work.· Includes a discussion of fractals, a promising area of future research.· The section on regression has been expanded to include several variants that have special significance in the Earth sciences.







Introduction to Python in Earth Science Data Analysis


Book Description

This textbook introduces the use of Python programming for exploring and modelling data in the field of Earth Sciences. It drives the reader from his very first steps with Python, like setting up the environment and starting writing the first lines of codes, to proficient use in visualizing, analyzing, and modelling data in the field of Earth Science. Each chapter contains explicative examples of code, and each script is commented in detail. The book is minded for very beginners in Python programming, and it can be used in teaching courses at master or PhD levels. Also, Early careers and experienced researchers who would like to start learning Python programming for the solution of geological problems will benefit the reading of the book.




MATLAB® Recipes for Earth Sciences


Book Description

Introduces methods of data analysis in geosciences using MATLAB such as basic statistics for univariate, bivariate and multivariate datasets, jackknife and bootstrap resampling schemes, processing of digital elevation models, gridding and contouring, geostatistics and kriging, processing and georeferencing of satellite images, digitizing from the screen, linear and nonlinear time-series analysis and the application of linear time-invariant and adaptive filters. Includes a brief description of each method and numerous examples demonstrating how MATLAB can be used on data sets from earth sciences.




Data Assimilation for the Geosciences


Book Description

Data Assimilation for the Geosciences: From Theory to Application brings together all of the mathematical,statistical, and probability background knowledge needed to formulate data assimilation systems in one place. It includes practical exercises for understanding theoretical formulation and presents some aspects of coding the theory with a toy problem. The book also demonstrates how data assimilation systems are implemented in larger scale fluid dynamical problems related to the atmosphere, oceans, as well as the land surface and other geophysical situations. It offers a comprehensive presentation of the subject, from basic principles to advanced methods, such as Particle Filters and Markov-Chain Monte-Carlo methods. Additionally, Data Assimilation for the Geosciences: From Theory to Application covers the applications of data assimilation techniques in various disciplines of the geosciences, making the book useful to students, teachers, and research scientists. Includes practical exercises, enabling readers to apply concepts in a theoretical formulation Offers explanations for how to code certain parts of the theory Presents a step-by-step guide on how, and why, data assimilation works and can be used




Statistics for Geoscientists


Book Description

Presents nearly all the important elementary and analytical methods of statistics, designed for the needs of the geoscientist and completely free from higher mathematics. Translated from the second German edition.




Applied Statistical Modeling and Data Analytics


Book Description

Applied Statistical Modeling and Data Analytics: A Practical Guide for the Petroleum Geosciences provides a practical guide to many of the classical and modern statistical techniques that have become established for oil and gas professionals in recent years. It serves as a "how to" reference volume for the practicing petroleum engineer or geoscientist interested in applying statistical methods in formation evaluation, reservoir characterization, reservoir modeling and management, and uncertainty quantification. Beginning with a foundational discussion of exploratory data analysis, probability distributions and linear regression modeling, the book focuses on fundamentals and practical examples of such key topics as multivariate analysis, uncertainty quantification, data-driven modeling, and experimental design and response surface analysis. Data sets from the petroleum geosciences are extensively used to demonstrate the applicability of these techniques. The book will also be useful for professionals dealing with subsurface flow problems in hydrogeology, geologic carbon sequestration, and nuclear waste disposal. - Authored by internationally renowned experts in developing and applying statistical methods for oil & gas and other subsurface problem domains - Written by practitioners for practitioners - Presents an easy to follow narrative which progresses from simple concepts to more challenging ones - Includes online resources with software applications and practical examples for the most relevant and popular statistical methods, using data sets from the petroleum geosciences - Addresses the theory and practice of statistical modeling and data analytics from the perspective of petroleum geoscience applications