Data Analysis with Small Samples and Non-normal Data


Book Description

Introduction to nonparametrics -- Analyzing single variables and single groups -- Comparing two or more independent groups -- Comparing two or more related groups -- Predicting with multiple independent variables -- Appendix -- Index




Introductory Business Statistics 2e


Book Description

Introductory Business Statistics 2e aligns with the topics and objectives of the typical one-semester statistics course for business, economics, and related majors. The text provides detailed and supportive explanations and extensive step-by-step walkthroughs. The author places a significant emphasis on the development and practical application of formulas so that students have a deeper understanding of their interpretation and application of data. Problems and exercises are largely centered on business topics, though other applications are provided in order to increase relevance and showcase the critical role of statistics in a number of fields and real-world contexts. The second edition retains the organization of the original text. Based on extensive feedback from adopters and students, the revision focused on improving currency and relevance, particularly in examples and problems. This is an adaptation of Introductory Business Statistics 2e by OpenStax. You can access the textbook as pdf for free at openstax.org. Minor editorial changes were made to ensure a better ebook reading experience. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution 4.0 International License.




Introduction to Robust Estimation and Hypothesis Testing


Book Description

"This book focuses on the practical aspects of modern and robust statistical methods. The increased accuracy and power of modern methods, versus conventional approaches to the analysis of variance (ANOVA) and regression, is remarkable. Through a combination of theoretical developments, improved and more flexible statistical methods, and the power of the computer, it is now possible to address problems with standard methods that seemed insurmountable only a few years ago"--




Illustrating Statistical Procedures: Finding Meaning in Quantitative Data


Book Description

This book occupies a unique position in the field of statistical analysis in the behavioural and social sciences in that it targets learners who would benefit from learning more conceptually and less computationally about statistical procedures and the software packages that can be used to implement them. This book provides a comprehensive overview of this important research skill domain with an emphasis on visual support for learning and better understanding. The primary focus is on fundamental concepts, procedures and interpretations of statistical analyses within a single broad illustrative research context. The book covers a wide range of descriptive, correlational and inferential statistical procedures as well as more advanced procedures not typically covered in introductory and intermediate statistical texts. It is an ideal reference for postgraduate students as well as for researchers seeking to broaden their conceptual exposure to what is possible in statistical analysis.




Learning Statistics with R


Book Description

"Learning Statistics with R" covers the contents of an introductory statistics class, as typically taught to undergraduate psychology students, focusing on the use of the R statistical software and adopting a light, conversational style throughout. The book discusses how to get started in R, and gives an introduction to data manipulation and writing scripts. From a statistical perspective, the book discusses descriptive statistics and graphing first, followed by chapters on probability theory, sampling and estimation, and null hypothesis testing. After introducing the theory, the book covers the analysis of contingency tables, t-tests, ANOVAs and regression. Bayesian statistics are covered at the end of the book. For more information (and the opportunity to check the book out before you buy!) visit http://ua.edu.au/ccs/teaching/lsr or http://learningstatisticswithr.com




An Introduction to Medical Statistics


Book Description

Now in its Fourth Edition, An Introduction to Medical Statistics continues to be a 'must-have' textbook for anyone who needs a clear logical guide to the subject. Written in an easy-to-understand style and packed with real life examples, the text clearly explains the statistical principles used in the medical literature. Taking readers through the common statistical methods seen in published research and guidelines, the text focuses on how to interpret and analyse statistics for clinical practice. Using extracts from real studies, the author illustrates how data can be employed correctly and incorrectly in medical research helping readers to evaluate the statistics they encounter and appropriately implement findings in clinical practice. End of chapter exercises, case studies and multiple choice questions help readers to apply their learning and develop their own interpretative skills. This thoroughly revised edition includes new chapters on meta-analysis, missing data, and survival analysis.




Flexible Imputation of Missing Data, Second Edition


Book Description

Missing data pose challenges to real-life data analysis. Simple ad-hoc fixes, like deletion or mean imputation, only work under highly restrictive conditions, which are often not met in practice. Multiple imputation replaces each missing value by multiple plausible values. The variability between these replacements reflects our ignorance of the true (but missing) value. Each of the completed data set is then analyzed by standard methods, and the results are pooled to obtain unbiased estimates with correct confidence intervals. Multiple imputation is a general approach that also inspires novel solutions to old problems by reformulating the task at hand as a missing-data problem. This is the second edition of a popular book on multiple imputation, focused on explaining the application of methods through detailed worked examples using the MICE package as developed by the author. This new edition incorporates the recent developments in this fast-moving field. This class-tested book avoids mathematical and technical details as much as possible: formulas are accompanied by verbal statements that explain the formula in accessible terms. The book sharpens the reader’s intuition on how to think about missing data, and provides all the tools needed to execute a well-grounded quantitative analysis in the presence of missing data.







Growth Modeling


Book Description

Growth models are among the core methods for analyzing how and when people change. Discussing both structural equation and multilevel modeling approaches, this book leads readers step by step through applying each model to longitudinal data to answer particular research questions. It demonstrates cutting-edge ways to describe linear and nonlinear change patterns, examine within-person and between-person differences in change, study change in latent variables, identify leading and lagging indicators of change, evaluate co-occurring patterns of change across multiple variables, and more. User-friendly features include real data examples, code (for Mplus or NLMIXED in SAS, and OpenMx or nlme in R), discussion of the output, and interpretation of each model's results. User-Friendly Features *Real, worked-through longitudinal data examples serving as illustrations in each chapter. *Script boxes that provide code for fitting the models to example data and facilitate application to the reader's own data. *"Important Considerations" sections offering caveats, warnings, and recommendations for the use of specific models. *Companion website supplying datasets and syntax for the book's examples, along with additional code in SAS/R for linear mixed-effects modeling.




The Concise Encyclopedia of Statistics


Book Description

The Concise Encyclopedia of Statistics presents the essential information about statistical tests, concepts, and analytical methods in language that is accessible to practitioners and students of the vast community using statistics in medicine, engineering, physical science, life science, social science, and business/economics. The reference is alphabetically arranged to provide quick access to the fundamental tools of statistical methodology and biographies of famous statisticians. The more than 500 entries include definitions, history, mathematical details, limitations, examples, references, and further readings. All entries include cross-references as well as the key citations. The back matter includes a timeline of statistical inventions. This reference will be an enduring resource for locating convenient overviews about this essential field of study.