Internet of Things and Data Analytics Handbook


Book Description

This book examines the Internet of Things (IoT) and Data Analytics from a technical, application, and business point of view. Internet of Things and Data Analytics Handbook describes essential technical knowledge, building blocks, processes, design principles, implementation, and marketing for IoT projects. It provides readers with knowledge in planning, designing, and implementing IoT projects. The book is written by experts on the subject matter, including international experts from nine countries in the consumer and enterprise fields of IoT. The text starts with an overview and anatomy of IoT, ecosystem of IoT, communication protocols, networking, and available hardware, both present and future applications and transformations, and business models. The text also addresses big data analytics, machine learning, cloud computing, and consideration of sustainability that are essential to be both socially responsible and successful. Design and implementation processes are illustrated with best practices and case studies in action. In addition, the book: Examines cloud computing, data analytics, and sustainability and how they relate to IoT overs the scope of consumer, government, and enterprise applications Includes best practices, business model, and real-world case studies Hwaiyu Geng, P.E., is a consultant with Amica Research (www.AmicaResearch.org, Palo Alto, California), promoting green planning, design, and construction projects. He has had over 40 years of manufacturing and management experience, working with Westinghouse, Applied Materials, Hewlett Packard, and Intel on multi-million high-tech projects. He has written and presented numerous technical papers at international conferences. Mr. Geng, a patent holder, is also the editor/author of Data Center Handbook (Wiley, 2015).




Analytics for the Internet of Things (IoT)


Book Description

Break through the hype and learn how to extract actionable intelligence from the flood of IoT data About This Book Make better business decisions and acquire greater control of your IoT infrastructure Learn techniques to solve unique problems associated with IoT and examine and analyze data from your IoT devices Uncover the business potential generated by data from IoT devices and bring down business costs Who This Book Is For This book targets developers, IoT professionals, and those in the field of data science who are trying to solve business problems through IoT devices and would like to analyze IoT data. IoT enthusiasts, managers, and entrepreneurs who would like to make the most of IoT will find this equally useful. A prior knowledge of IoT would be helpful but is not necessary. Some prior programming experience would be useful What You Will Learn Overcome the challenges IoT data brings to analytics Understand the variety of transmission protocols for IoT along with their strengths and weaknesses Learn how data flows from the IoT device to the final data set Develop techniques to wring value from IoT data Apply geospatial analytics to IoT data Use machine learning as a predictive method on IoT data Implement best strategies to get the most from IoT analytics Master the economics of IoT analytics in order to optimize business value In Detail We start with the perplexing task of extracting value from huge amounts of barely intelligible data. The data takes a convoluted route just to be on the servers for analysis, but insights can emerge through visualization and statistical modeling techniques. You will learn to extract value from IoT big data using multiple analytic techniques. Next we review how IoT devices generate data and how the information travels over networks. You'll get to know strategies to collect and store the data to optimize the potential for analytics, and strategies to handle data quality concerns. Cloud resources are a great match for IoT analytics, so Amazon Web Services, Microsoft Azure, and PTC ThingWorx are reviewed in detail next. Geospatial analytics is then introduced as a way to leverage location information. Combining IoT data with environmental data is also discussed as a way to enhance predictive capability. We'll also review the economics of IoT analytics and you'll discover ways to optimize business value. By the end of the book, you'll know how to handle scale for both data storage and analytics, how Apache Spark can be leveraged to handle scalability, and how R and Python can be used for analytic modeling. Style and approach This book follows a step-by-step, practical approach to combine the power of analytics and IoT and help you get results quickly




Data Analytics for Internet of Things Infrastructure


Book Description

This book provides techniques for the deployment of semantic technologies in data analysis along with the latest applications across the field such as Internet of Things (IoT). The authors focus on the use of the IoT and big data in business intelligence, data management, Hadoop, machine learning, cloud, smart cities, etc. They discuss how the generation of big data by IoT has ruptured the existing data processing capacity of IoT and recommends the adoption of data analytics to strengthen solutions. The book addresses the challenges in designing the web based IoT system, provides a comparative analysis of different advanced approaches in industries, and contains an analysis of databases to provide expert systems. The book aims to bring together leading academic scientists, researchers, and research scholars to exchange and share their experiences and research results on all aspects of IoT and big data analytics.




Big Data Analytics for Internet of Things


Book Description

BIG DATA ANALYTICS FOR INTERNET OF THINGS Discover the latest developments in IoT Big Data with a new resource from established and emerging leaders in the field Big Data Analytics for Internet of Things delivers a comprehensive overview of all aspects of big data analytics in Internet of Things (IoT) systems. The book includes discussions of the enabling technologies of IoT data analytics, types of IoT data analytics, challenges in IoT data analytics, demand for IoT data analytics, computing platforms, analytical tools, privacy, and security. The distinguished editors have included resources that address key techniques in the analysis of IoT data. The book demonstrates how to select the appropriate techniques to unearth valuable insights from IoT data and offers novel designs for IoT systems. With an abiding focus on practical strategies with concrete applications for data analysts and IoT professionals, Big Data Analytics for Internet of Things also offers readers: A thorough introduction to the Internet of Things, including IoT architectures, enabling technologies, and applications An exploration of the intersection between the Internet of Things and Big Data, including IoT as a source of Big Data, the unique characteristics of IoT data, etc. A discussion of the IoT data analytics, including the data analytical requirements of IoT data and the types of IoT analytics, including predictive, descriptive, and prescriptive analytics A treatment of machine learning techniques for IoT data analytics Perfect for professionals, industry practitioners, and researchers engaged in big data analytics related to IoT systems, Big Data Analytics for Internet of Things will also earn a place in the libraries of IoT designers and manufacturers interested in facilitating the efficient implementation of data analytics strategies.




Emerging Trends in IoT and Integration with Data Science, Cloud Computing, and Big Data Analytics


Book Description

The internet of things (IoT) has emerged to address the need for connectivity and seamless integration with other devices as well as big data platforms for analytics. However, there are challenges that IoT-based applications face including design and implementation issues; connectivity problems; data gathering, storing, and analyzing in cloud-based environments; and IoT security and privacy issues. Emerging Trends in IoT and Integration with Data Science, Cloud Computing, and Big Data Analytics is a critical reference source that provides theoretical frameworks and research findings on IoT and big data integration. Highlighting topics that include wearable sensors, machine learning, machine intelligence, and mobile computing, this book serves professionals who want to improve their understanding of the strategic role of trust at different levels of the information and knowledge society. It is therefore of most value to data scientists, computer scientists, data analysts, IT specialists, academicians, professionals, researchers, and students working in the field of information and knowledge management in various disciplines that include but are not limited to information and communication sciences, administrative sciences and management, education, sociology, computer science, etc. Moreover, the book provides insights and supports executives concerned with the management of expertise, knowledge, information, and organizational development in different types of work communities and environments.




Deep Learning for Internet of Things Infrastructure


Book Description

This book promotes and facilitates exchanges of research knowledge and findings across different disciplines on the design and investigation of deep learning (DL)–based data analytics of IoT (Internet of Things) infrastructures. Deep Learning for Internet of Things Infrastructure addresses emerging trends and issues on IoT systems and services across various application domains. The book investigates the challenges posed by the implementation of deep learning on IoT networking models and services. It provides fundamental theory, model, and methodology in interpreting, aggregating, processing, and analyzing data for intelligent DL-enabled IoT. The book also explores new functions and technologies to provide adaptive services and intelligent applications for different end users. FEATURES Promotes and facilitates exchanges of research knowledge and findings across different disciplines on the design and investigation of DL-based data analytics of IoT infrastructures Addresses emerging trends and issues on IoT systems and services across various application domains Investigates the challenges posed by the implementation of deep learning on IoT networking models and services Provides fundamental theory, model, and methodology in interpreting, aggregating, processing, and analyzing data for intelligent DL-enabled IoT Explores new functions and technologies to provide adaptive services and intelligent applications for different end users Uttam Ghosh is an Assistant Professor in the Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee, USA. Mamoun Alazab is an Associate Professor in the College of Engineering, IT and Environment at Charles Darwin University, Australia. Ali Kashif Bashir is a Senior Lecturer/Associate Professor and Program Leader of BSc (H) Computer Forensics and Security at the Department of Computing and Mathematics, Manchester Metropolitan University, United Kingdom. Al-Sakib Khan Pathan is an Adjunct Professor of Computer Science and Engineering at the Independent University, Bangladesh.




Role of Edge Analytics in Sustainable Smart City Development


Book Description

Efficient Single Board Computers (SBCs) and advanced VLSI systems have resulted in edge analytics and faster decision making. The QoS parameters like energy, delay, reliability, security, and throughput should be improved on seeking better intelligent expert systems. The resource constraints in the Edge devices, challenges the researchers to meet the required QoS. Since these devices and components work in a remote unattended environment, an optimum methodology to improve its lifetime has become mandatory. Continuous monitoring of events is mandatory to avoid tragic situations; it can only be enabled by providing high QoS. The applications of IoT in digital twin development, health care, traffic analysis, home surveillance, intelligent agriculture monitoring, defense and all common day to day activities have resulted in pioneering embedded devices, which can offer high computational facility without much latency and delay. The book address industrial problems in designing expert system and IoT applications. It provides novel survey and case study report on recent industrial approach towards Smart City development.




The Internet of Things


Book Description

Provides comprehensive coverage of the current state of IoT, focusing on data processing infrastructure and techniques Written by experts in the field, this book addresses the IoT technology stack, from connectivity through data platforms to end-user case studies, and considers the tradeoffs between business needs and data security and privacy throughout. There is a particular emphasis on data processing technologies that enable the extraction of actionable insights from data to inform improved decision making. These include artificial intelligence techniques such as stream processing, deep learning and knowledge graphs, as well as data interoperability and the key aspects of privacy, security and trust. Additional aspects covered include: creating and supporting IoT ecosystems; edge computing; data mining of sensor datasets; and crowd-sourcing, amongst others. The book also presents several sections featuring use cases across a range of application areas such as smart energy, transportation, smart factories, and more. The book concludes with a chapter on key considerations when deploying IoT technologies in the enterprise, followed by a brief review of future research directions and challenges. The Internet of Things: From Data to Insight Provides a comprehensive overview of the Internet of Things technology stack with focus on data driven aspects from data modelling and processing to presentation for decision making Explains how IoT technology is applied in practice and the benefits being delivered. Acquaints readers that are new to the area with concepts, components, technologies, and verticals related to and enabled by IoT Gives IoT specialists a deeper insight into data and decision-making aspects as well as novel technologies and application areas Analyzes and presents important emerging technologies for the IoT arena Shows how different objects and devices can be connected to decision making processes at various levels of abstraction The Internet of Things: From Data to Insight will appeal to a wide audience, including IT and network specialists seeking a broad and complete understanding of IoT, CIOs and CIO teams, researchers in IoT and related fields, final year undergraduates, graduate students, post-graduates, and IT and science media professionals.




Internet of Things and Big Data Analytics for Smart Generation


Book Description

This book discusses emerging technologies in the field of the Internet of Things and big data, an area that will be scaled in next two decades. Written by a team of leading experts, it is the only book focusing on the broad areas of both the Internet of things and big data. The thirteen chapters present real-time experimental methods and theoretical explanations, as well as the implementation of these technologies through various applications. Offering a blend of theory and hands-on practices, the book enables graduate, postgraduate and research students who are involved in real-time project scaling techniques to understand projects and their execution. It is also useful for senior computer students, researchers and industry workers who are involved in experimenting with the Internet of Things and big data technologies, helping them to solve the real-time problem. Moreover, the chapters covering cutting-edge technologies help multidisciplinary researchers who are bridging the gap of two different outset real-time problems.




Internet of Things for Architects


Book Description

Learn to design, implement and secure your IoT infrastructure Key Features Build a complete IoT system that is the best fit for your organization Learn about different concepts, technologies, and tradeoffs in the IoT architectural stack Understand the theory, concepts, and implementation of each element that comprises IoT design—from sensors to the cloud Implement best practices to ensure the reliability, scalability, robust communication systems, security, and data analysis in your IoT infrastructure Book Description The Internet of Things (IoT) is the fastest growing technology market. Industries are embracing IoT technologies to improve operational expenses, product life, and people's well-being. An architectural guide is necessary if you want to traverse the spectrum of technologies needed to build a successful IoT system, whether that's a single device or millions of devices. This book encompasses the entire spectrum of IoT solutions, from sensors to the cloud. We start by examining modern sensor systems and focus on their power and functionality. After that, we dive deep into communication theory, paying close attention to near-range PAN, including the new Bluetooth® 5.0 specification and mesh networks. Then, we explore IP-based communication in LAN and WAN, including 802.11ah, 5G LTE cellular, SigFox, and LoRaWAN. Next, we cover edge routing and gateways and their role in fog computing, as well as the messaging protocols of MQTT and CoAP. With the data now in internet form, you'll get an understanding of cloud and fog architectures, including the OpenFog standards. We wrap up the analytics portion of the book with the application of statistical analysis, complex event processing, and deep learning models. Finally, we conclude by providing a holistic view of the IoT security stack and the anatomical details of IoT exploits while countering them with software defined perimeters and blockchains. What you will learn Understand the role and scope of architecting a successful IoT deployment, from sensors to the cloud Scan the landscape of IoT technologies that span everything from sensors to the cloud and everything in between See the trade-offs in choices of protocols and communications in IoT deployments Build a repertoire of skills and the vernacular necessary to work in the IoT space Broaden your skills in multiple engineering domains necessary for the IoT architect Who this book is for This book is for architects, system designers, technologists, and technology managers who want to understand the IoT ecosphere, various technologies, and tradeoffs and develop a 50,000-foot view of IoT architecture.