Data Architecture
Author : William H. Inmon
Publisher :
Page : 0 pages
File Size : 46,18 MB
Release : 2015
Category : Big data
ISBN :
Author : William H. Inmon
Publisher :
Page : 0 pages
File Size : 46,18 MB
Release : 2015
Category : Big data
ISBN :
Author : W.H. Inmon
Publisher : Academic Press
Page : 434 pages
File Size : 19,25 MB
Release : 2019-04-30
Category : Computers
ISBN : 0128169176
Over the past 5 years, the concept of big data has matured, data science has grown exponentially, and data architecture has become a standard part of organizational decision-making. Throughout all this change, the basic principles that shape the architecture of data have remained the same. There remains a need for people to take a look at the "bigger picture" and to understand where their data fit into the grand scheme of things. Data Architecture: A Primer for the Data Scientist, Second Edition addresses the larger architectural picture of how big data fits within the existing information infrastructure or data warehousing systems. This is an essential topic not only for data scientists, analysts, and managers but also for researchers and engineers who increasingly need to deal with large and complex sets of data. Until data are gathered and can be placed into an existing framework or architecture, they cannot be used to their full potential. Drawing upon years of practical experience and using numerous examples and case studies from across various industries, the authors seek to explain this larger picture into which big data fits, giving data scientists the necessary context for how pieces of the puzzle should fit together. - New case studies include expanded coverage of textual management and analytics - New chapters on visualization and big data - Discussion of new visualizations of the end-state architecture
Author : W.H. Inmon
Publisher : Morgan Kaufmann
Page : 378 pages
File Size : 29,59 MB
Release : 2014-11-26
Category : Computers
ISBN : 0128020911
Today, the world is trying to create and educate data scientists because of the phenomenon of Big Data. And everyone is looking deeply into this technology. But no one is looking at the larger architectural picture of how Big Data needs to fit within the existing systems (data warehousing systems). Taking a look at the larger picture into which Big Data fits gives the data scientist the necessary context for how pieces of the puzzle should fit together. Most references on Big Data look at only one tiny part of a much larger whole. Until data gathered can be put into an existing framework or architecture it can't be used to its full potential. Data Architecture a Primer for the Data Scientist addresses the larger architectural picture of how Big Data fits with the existing information infrastructure, an essential topic for the data scientist. Drawing upon years of practical experience and using numerous examples and an easy to understand framework. W.H. Inmon, and Daniel Linstedt define the importance of data architecture and how it can be used effectively to harness big data within existing systems. You'll be able to: - Turn textual information into a form that can be analyzed by standard tools. - Make the connection between analytics and Big Data - Understand how Big Data fits within an existing systems environment - Conduct analytics on repetitive and non-repetitive data - Discusses the value in Big Data that is often overlooked, non-repetitive data, and why there is significant business value in using it - Shows how to turn textual information into a form that can be analyzed by standard tools - Explains how Big Data fits within an existing systems environment - Presents new opportunities that are afforded by the advent of Big Data - Demystifies the murky waters of repetitive and non-repetitive data in Big Data
Author : John Reekie
Publisher : Software Architecture Primer
Page : 194 pages
File Size : 50,35 MB
Release : 2006
Category : Computers
ISBN : 0646458418
The authors present a fresh, pragmatic approach to the study of software architecture. This edition contains a series of chapters that introduce and develop an understanding of software architecture by means of careful explanation and elaboration of a range of key concepts. (Computer Books)
Author : Avrim Blum
Publisher : Cambridge University Press
Page : 433 pages
File Size : 12,11 MB
Release : 2020-01-23
Category : Computers
ISBN : 1108617360
This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and analysis of large networks. Topics include the counterintuitive nature of data in high dimensions, important linear algebraic techniques such as singular value decomposition, the theory of random walks and Markov chains, the fundamentals of and important algorithms for machine learning, algorithms and analysis for clustering, probabilistic models for large networks, representation learning including topic modelling and non-negative matrix factorization, wavelets and compressed sensing. Important probabilistic techniques are developed including the law of large numbers, tail inequalities, analysis of random projections, generalization guarantees in machine learning, and moment methods for analysis of phase transitions in large random graphs. Additionally, important structural and complexity measures are discussed such as matrix norms and VC-dimension. This book is suitable for both undergraduate and graduate courses in the design and analysis of algorithms for data.
Author : John D. Kelleher
Publisher : MIT Press
Page : 282 pages
File Size : 34,65 MB
Release : 2018-04-13
Category : Computers
ISBN : 0262535432
A concise introduction to the emerging field of data science, explaining its evolution, relation to machine learning, current uses, data infrastructure issues, and ethical challenges. The goal of data science is to improve decision making through the analysis of data. Today data science determines the ads we see online, the books and movies that are recommended to us online, which emails are filtered into our spam folders, and even how much we pay for health insurance. This volume in the MIT Press Essential Knowledge series offers a concise introduction to the emerging field of data science, explaining its evolution, current uses, data infrastructure issues, and ethical challenges. It has never been easier for organizations to gather, store, and process data. Use of data science is driven by the rise of big data and social media, the development of high-performance computing, and the emergence of such powerful methods for data analysis and modeling as deep learning. Data science encompasses a set of principles, problem definitions, algorithms, and processes for extracting non-obvious and useful patterns from large datasets. It is closely related to the fields of data mining and machine learning, but broader in scope. This book offers a brief history of the field, introduces fundamental data concepts, and describes the stages in a data science project. It considers data infrastructure and the challenges posed by integrating data from multiple sources, introduces the basics of machine learning, and discusses how to link machine learning expertise with real-world problems. The book also reviews ethical and legal issues, developments in data regulation, and computational approaches to preserving privacy. Finally, it considers the future impact of data science and offers principles for success in data science projects.
Author : Bill Inmon
Publisher :
Page : 0 pages
File Size : 20,22 MB
Release : 2016
Category : Big data
ISBN : 9781634621175
Data Lake Architecture will explain how to build a useful data lake, where data scientists and data analysts can solve business challenges and identify new business opportunities
Author : Piethein Strengholt
Publisher : "O'Reilly Media, Inc."
Page : 404 pages
File Size : 17,31 MB
Release : 2020-07-29
Category : Computers
ISBN : 1492054739
As data management and integration continue to evolve rapidly, storing all your data in one place, such as a data warehouse, is no longer scalable. In the very near future, data will need to be distributed and available for several technological solutions. With this practical book, you’ll learnhow to migrate your enterprise from a complex and tightly coupled data landscape to a more flexible architecture ready for the modern world of data consumption. Executives, data architects, analytics teams, and compliance and governance staff will learn how to build a modern scalable data landscape using the Scaled Architecture, which you can introduce incrementally without a large upfront investment. Author Piethein Strengholt provides blueprints, principles, observations, best practices, and patterns to get you up to speed. Examine data management trends, including technological developments, regulatory requirements, and privacy concerns Go deep into the Scaled Architecture and learn how the pieces fit together Explore data governance and data security, master data management, self-service data marketplaces, and the importance of metadata
Author : Martijn Groot
Publisher : Academic Press
Page : 302 pages
File Size : 14,17 MB
Release : 2017-05-10
Category : Technology & Engineering
ISBN : 0128099003
A Primer in Financial Data Management describes concepts and methods, considering financial data management, not as a technological challenge, but as a key asset that underpins effective business management. This broad survey of data management in financial services discusses the data and process needs from the business user, client and regulatory perspectives. Its non-technical descriptions and insights can be used by readers with diverse interests across the financial services industry. The need has never been greater for skills, systems, and methodologies to manage information in financial markets. The volume of data, the diversity of sources, and the power of the tools to process it massively increased. Demands from business, customers, and regulators on transparency, safety, and above all, timely availability of high quality information for decision-making and reporting have grown in tandem, making this book a must read for those working in, or interested in, financial management. - Focuses on ways information management can fuel financial institutions' processes, including regulatory reporting, trade lifecycle management, and customer interaction - Covers recent regulatory and technological developments and their implications for optimal financial information management - Views data management from a supply chain perspective and discusses challenges and opportunities, including big data technologies and regulatory scrutiny
Author : Gregg Hartvigsen
Publisher : Columbia University Press
Page : 245 pages
File Size : 35,66 MB
Release : 2014-02-18
Category : Education
ISBN : 0231537042
R is the most widely used open-source statistical and programming environment for the analysis and visualization of biological data. Drawing on Gregg Hartvigsen's extensive experience teaching biostatistics and modeling biological systems, this text is an engaging, practical, and lab-oriented introduction to R for students in the life sciences. Underscoring the importance of R and RStudio in organizing, computing, and visualizing biological statistics and data, Hartvigsen guides readers through the processes of entering data into R, working with data in R, and using R to visualize data using histograms, boxplots, barplots, scatterplots, and other common graph types. He covers testing data for normality, defining and identifying outliers, and working with non-normal data. Students are introduced to common one- and two-sample tests as well as one- and two-way analysis of variance (ANOVA), correlation, and linear and nonlinear regression analyses. This volume also includes a section on advanced procedures and a chapter introducing algorithms and the art of programming using R.