Data-Driven Approach for Bio-medical and Healthcare


Book Description

The book presents current research advances, both academic and industrial, in machine learning, artificial intelligence, and data analytics for biomedical and healthcare applications. The book deals with key challenges associated with biomedical data analysis including higher dimensions, class imbalances, smaller database sizes, etc. It also highlights development of novel pattern recognition and machine learning methods specific to medical and genomic data, which is extremely necessary but highly challenging. The book will be useful for healthcare professionals who have access to interesting data sources but lack the expertise to use data mining effectively.




Handbook of Data Science Approaches for Biomedical Engineering


Book Description

Handbook of Data Science Approaches for Biomedical Engineering covers the research issues and concepts of biomedical engineering progress and the ways they are aligning with the latest technologies in IoT and big data. In addition, the book includes various real-time/offline medical applications that directly or indirectly rely on medical and information technology. Case studies in the field of medical science, i.e., biomedical engineering, computer science, information security, and interdisciplinary tools, along with modern tools and the technologies used are also included to enhance understanding. Today, the role of Big Data and IoT proves that ninety percent of data currently available has been generated in the last couple of years, with rapid increases happening every day. The reason for this growth is increasing in communication through electronic devices, sensors, web logs, global positioning system (GPS) data, mobile data, IoT, etc. Provides in-depth information about Biomedical Engineering with Big Data and Internet of Things Includes technical approaches for solving real-time healthcare problems and practical solutions through case studies in Big Data and Internet of Things Discusses big data applications for healthcare management, such as predictive analytics and forecasting, big data integration for medical data, algorithms and techniques to speed up the analysis of big medical data, and more




Leveraging Biomedical and Healthcare Data


Book Description

Leveraging Biomedical and Healthcare Data: Semantics, Analytics and Knowledge provides an overview of the approaches used in semantic systems biology, introduces novel areas of its application, and describes step-wise protocols for transforming heterogeneous data into useful knowledge that can influence healthcare and biomedical research. Given the astronomical increase in the number of published reports, papers, and datasets over the last few decades, the ability to curate this data has become a new field of biomedical and healthcare research. This book discusses big data text-based mining to better understand the molecular architecture of diseases and to guide health care decision. It will be a valuable resource for bioinformaticians and members of several areas of the biomedical field who are interested in understanding more about how to process and apply great amounts of data to improve their research. Includes at each section resource pages containing a list of available curated raw and processed data that can be used by researchers in the field Provides demonstrative and relevant examples that serve as a general tutorial Presents a list of algorithm names and computational tools available for basic and clinical researchers




Artificial Intelligence for Data-Driven Medical Diagnosis


Book Description

THE SERIES: INTELLIGENT BIOMEDICAL DATA ANALYSIS By focusing on the methods and tools for intelligent data analysis, this series aims to narrow the increasing gap between data gathering and data comprehension. Emphasis is also given to the problems resulting from automated data collection in modern hospitals, such as analysis of computer-based patient records, data warehousing tools, intelligent alarming, effective and efficient monitoring. In medicine, overcoming this gap is crucial since medical decision making needs to be supported by arguments based on existing medical knowledge as well as information, regularities and trends extracted from big data sets.




Data Analytics in Biomedical Engineering and Healthcare


Book Description

Data Analytics in Biomedical Engineering and Healthcare explores key applications using data analytics, machine learning, and deep learning in health sciences and biomedical data. The book is useful for those working with big data analytics in biomedical research, medical industries, and medical research scientists. The book covers health analytics, data science, and machine and deep learning applications for biomedical data, covering areas such as predictive health analysis, electronic health records, medical image analysis, computational drug discovery, and genome structure prediction using predictive modeling. Case studies demonstrate big data applications in healthcare using the MapReduce and Hadoop frameworks. Examines the development and application of data analytics applications in biomedical data Presents innovative classification and regression models for predicting various diseases Discusses genome structure prediction using predictive modeling Shows readers how to develop clinical decision support systems Shows researchers and specialists how to use hybrid learning for better medical diagnosis, including case studies of healthcare applications using the MapReduce and Hadoop frameworks




Data-driven Approaches for Complex Systems


Book Description

Many research efforts to advance human health and well-being involve interdisciplinary problem spaces and complex, poorly-understood systems. This thesis integrates both computational and experimental approaches to advance our understanding and control of complex systems at the interface of machine learning, materials science, and manufacturing. Specifically, I demonstrate the data-driven description of supervised machine learning for biomedical engineering tasks, the data-driven design of optimized soft granular biomaterials, and the proof-of-concept development of a transcatheter additive manufacturing platform. In Part 1, I develop custom software for high-resolution, multifactorial machine learning (ML) experiments. I iteratively apply this workflow to a set of diverse ML problems from the biomedical engineering (BME) domain to generate massive meta-datasets covering each phase of the hierarchical ML optimization and evaluation process. Then, I describe the underlying patterns and heterogeneity in these rich datasets and delineate empirical guidelines for the rigorous and reliable adoption of machine learning for BME problems. In Part 2, I leverage the insights from Part 1 to develop a flexible and robust data-driven modeling pipeline for complex soft materials. The pipeline can be applied after each round of experimentation to build predictive models, extract key design rules, and generate data-driven design frameworks. I use this integrated, stepwise approach to optimize the structures, properties, and performance profiles of soft granular biomaterials for injection- and extrusion-based biomedical applications. In Part 3, I leverage the optimized materials from Part 2 to develop a novel microgel-based transcatheter additive manufacturing technology. I obtain proof-of-concept data for the platform's critical features, including controlled transcatheter material delivery to distant target locations, rapid in situ structuration of arbitrary 3D constructs, and reliable scaffold stabilization to ensure long-term implant integrity. Together, this work paves the way for minimally-invasive, patient-specific, in situ biofabrication.




Data Driven Science for Clinically Actionable Knowledge in Diseases


Book Description

Data-driven science has become a major decision-making aid for the diagnosis and treatment of disease. Computational and visual analytics enables effective exploration and sense making of large and complex data through the deployment of appropriate data science methods, meaningful visualisation and human-information interaction. This edited volume covers state-of-the-art theory, method, models, design, evaluation and applications in computational and visual analytics in desktop, mobile and immersive environments for analysing biomedical and health data. The book is focused on data-driven integral analysis, including computational methods and visual analytics practices and solutions for discovering actionable knowledge in support of clinical actions in real environments. By studying how data and visual analytics have been implemented into the healthcare domain, the book demonstrates how analytics influences the domain through improving decision making, specifying diagnostics, selecting the best treatments and generating clinical certainty.




Deep Learning Techniques for Biomedical and Health Informatics


Book Description

Deep Learning Techniques for Biomedical and Health Informatics provides readers with the state-of-the-art in deep learning-based methods for biomedical and health informatics. The book covers not only the best-performing methods, it also presents implementation methods. The book includes all the prerequisite methodologies in each chapter so that new researchers and practitioners will find it very useful. Chapters go from basic methodology to advanced methods, including detailed descriptions of proposed approaches and comprehensive critical discussions on experimental results and how they are applied to Biomedical Engineering, Electronic Health Records, and medical image processing. Examines a wide range of Deep Learning applications for Biomedical Engineering and Health Informatics, including Deep Learning for drug discovery, clinical decision support systems, disease diagnosis, prediction and monitoring Discusses Deep Learning applied to Electronic Health Records (EHR), including health data structures and management, deep patient similarity learning, natural language processing, and how to improve clinical decision-making Provides detailed coverage of Deep Learning for medical image processing, including optimizing medical big data, brain image analysis, brain tumor segmentation in MRI imaging, and the future of biomedical image analysis




Introduction to Biomedical Data Science


Book Description

Overview of biomedical data science -- Spreadsheet tools and tips -- Biostatistics primer -- Data visualization -- Introduction to databases -- Big data -- Bioinformatics and precision medicine -- Programming languages for data analysis -- Machine learning -- Artificial intelligence -- Biomedical data science resources -- Appendix A: Glossary -- Appendix B: Using data.world -- Appendix C: Chapter exercises.




Big Data, Big Challenges: A Healthcare Perspective


Book Description

This is the first book to offer a comprehensive yet concise overview of the challenges and opportunities presented by the use of big data in healthcare. The respective chapters address a range of aspects: from health management to patient safety; from the human factor perspective to ethical and economic considerations, and many more. By providing a historical background on the use of big data, and critically analyzing current approaches together with issues and challenges related to their applications, the book not only sheds light on the problems entailed by big data, but also paves the way for possible solutions and future research directions. Accordingly, it offers an insightful reference guide for health information technology professionals, healthcare managers, healthcare practitioners, and patients alike, aiding them in their decision-making processes; and for students and researchers whose work involves data science-related research issues in healthcare.