Data Mining - Simple Steps to Win, Insights and Opportunities for Maxing Out Success


Book Description

The one-stop-source powering Data mining success, jam-packed with ready to use insights for results, loaded with all the data you need to decide how to gain and move ahead. Based on extensive research, this lays out the thinking of the most successful Data mining knowledge experts, those who are adept at continually innovating and seeing opportunities. This is the first place to go for Data mining innovation - INCLUDED are numerous real-world Data mining blueprints, presentations and templates ready for you to access and use. Also, if you are looking for answers to one or more of these questions then THIS is the title for you: What are the top 10 data mining or machine learning algorithms? How do I learn data mining? What is data mining? What is the future of data analysis? What are the best startups in the field of analytics / data mining / databases? How do I start a data mining firm? Why is data mining used? What techniques are useful for data mining financial time series? What are common data mining fallacies? What books do you recommend to get introduced in the data mining world? What does data mining involve? What are the most useful data mining / analysis / science tools? What are examples of data mining and analysis of succesful Kickstarter projects? What approaches exist for data-mining time series? What are some good research topics in data mining? How do I learn data mining in one month? Which are the most promising startups at the genomics/data mining interface? How should one begin career in data mining/business intelligence? What are the new data mining technologies? ...and much more...




Data Preparation for Data Mining


Book Description

This book focuses on the importance of clean, well-structured data as the first step to successful data mining. It shows how data should be prepared prior to mining in order to maximize mining performance.




Data Mining For Dummies


Book Description

Delve into your data for the key to success Data mining is quickly becoming integral to creating value and business momentum. The ability to detect unseen patterns hidden in the numbers exhaustively generated by day-to-day operations allows savvy decision-makers to exploit every tool at their disposal in the pursuit of better business. By creating models and testing whether patterns hold up, it is possible to discover new intelligence that could change your business's entire paradigm for a more successful outcome. Data Mining for Dummies shows you why it doesn't take a data scientist to gain this advantage, and empowers average business people to start shaping a process relevant to their business's needs. In this book, you'll learn the hows and whys of mining to the depths of your data, and how to make the case for heavier investment into data mining capabilities. The book explains the details of the knowledge discovery process including: Model creation, validity testing, and interpretation Effective communication of findings Available tools, both paid and open-source Data selection, transformation, and evaluation Data Mining for Dummies takes you step-by-step through a real-world data-mining project using open-source tools that allow you to get immediate hands-on experience working with large amounts of data. You'll gain the confidence you need to start making data mining practices a routine part of your successful business. If you're serious about doing everything you can to push your company to the top, Data Mining for Dummies is your ticket to effective data mining.




MASTERING DATA MINING: THE ART AND SCIENCE OF CUSTOMER RELATIONSHIP MANAGEMENT


Book Description

Special Features: · Best-in-class data mining techniques for solving critical problems in all areas of business· Explains how to pick the right data mining techniques for specific problems· Shows how to perform analysis and evaluate results· Features real-world examples from across various industry sectors· Companion Web site with updates on data mining products and service providers About The Book: Companies have invested in building data warehouses to capture vast amounts of customer information. The payoff comes with mining or getting access to the data within this information gold mine to make better business decisions. Readers and reviewers loved Berry and Linoff's first book, Data Mining Techniques, because the authors so clearly illustrate practical techniques with real benefits for improved marketing and sales. Mastering Data Mining takes off from there-assuming readers know the basic techniques covered in the first book, the authors focus on how to best apply these techniques to real business cases. They start with simple applications and work up to the most powerful and sophisticated examples over the course of about 20 cases. (Ralph Kimball used this same approach in his highly successful Data Warehouse Toolkit). As with their first book, Mastering Data Mining is sufficiently technical for database analysts, but is accessible to technically savvy business and marketing managers. It should also appeal to a new breed of database marketing managers.




Data Mining


Book Description

This comprehensive textbook on data mining details the unique steps of the knowledge discovery process that prescribes the sequence in which data mining projects should be performed, from problem and data understanding through data preprocessing to deployment of the results. This knowledge discovery approach is what distinguishes Data Mining from other texts in this area. The book provides a suite of exercises and includes links to instructional presentations. Furthermore, it contains appendices of relevant mathematical material.




Data Science for Business


Book Description

Written by renowned data science experts Foster Provost and Tom Fawcett, Data Science for Business introduces the fundamental principles of data science, and walks you through the "data-analytic thinking" necessary for extracting useful knowledge and business value from the data you collect. This guide also helps you understand the many data-mining techniques in use today. Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making. Understand how data science fits in your organization—and how you can use it for competitive advantage Treat data as a business asset that requires careful investment if you’re to gain real value Approach business problems data-analytically, using the data-mining process to gather good data in the most appropriate way Learn general concepts for actually extracting knowledge from data Apply data science principles when interviewing data science job candidates




Handbook of Statistical Analysis and Data Mining Applications


Book Description

Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. - Includes input by practitioners for practitioners - Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models - Contains practical advice from successful real-world implementations - Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions - Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications




Mining the Social Web


Book Description

Facebook, Twitter, and LinkedIn generate a tremendous amount of valuable social data, but how can you find out who's making connections with social media, what they’re talking about, or where they’re located? This concise and practical book shows you how to answer these questions and more. You'll learn how to combine social web data, analysis techniques, and visualization to help you find what you've been looking for in the social haystack, as well as useful information you didn't know existed. Each standalone chapter introduces techniques for mining data in different areas of the social Web, including blogs and email. All you need to get started is a programming background and a willingness to learn basic Python tools. Get a straightforward synopsis of the social web landscape Use adaptable scripts on GitHub to harvest data from social network APIs such as Twitter, Facebook, and LinkedIn Learn how to employ easy-to-use Python tools to slice and dice the data you collect Explore social connections in microformats with the XHTML Friends Network Apply advanced mining techniques such as TF-IDF, cosine similarity, collocation analysis, document summarization, and clique detection Build interactive visualizations with web technologies based upon HTML5 and JavaScript toolkits "Let Matthew Russell serve as your guide to working with social data sets old (email, blogs) and new (Twitter, LinkedIn, Facebook). Mining the Social Web is a natural successor to Programming Collective Intelligence: a practical, hands-on approach to hacking on data from the social Web with Python." --Jeff Hammerbacher, Chief Scientist, Cloudera "A rich, compact, useful, practical introduction to a galaxy of tools, techniques, and theories for exploring structured and unstructured data." --Alex Martelli, Senior Staff Engineer, Google




Process Mining


Book Description

This is the second edition of Wil van der Aalst’s seminal book on process mining, which now discusses the field also in the broader context of data science and big data approaches. It includes several additions and updates, e.g. on inductive mining techniques, the notion of alignments, a considerably expanded section on software tools and a completely new chapter of process mining in the large. It is self-contained, while at the same time covering the entire process-mining spectrum from process discovery to predictive analytics. After a general introduction to data science and process mining in Part I, Part II provides the basics of business process modeling and data mining necessary to understand the remainder of the book. Next, Part III focuses on process discovery as the most important process mining task, while Part IV moves beyond discovering the control flow of processes, highlighting conformance checking, and organizational and time perspectives. Part V offers a guide to successfully applying process mining in practice, including an introduction to the widely used open-source tool ProM and several commercial products. Lastly, Part VI takes a step back, reflecting on the material presented and the key open challenges. Overall, this book provides a comprehensive overview of the state of the art in process mining. It is intended for business process analysts, business consultants, process managers, graduate students, and BPM researchers.




Big Data


Book Description

A exploration of the latest trend in technology and the impact it will have on the economy, science, and society at large.